3 results on '"Klysz D"'
Search Results
2. FOXO1 is a master regulator of memory programming in CAR T cells.
- Author
-
Doan AE, Mueller KP, Chen AY, Rouin GT, Chen Y, Daniel B, Lattin J, Markovska M, Mozarsky B, Arias-Umana J, Hapke R, Jung IY, Wang A, Xu P, Klysz D, Zuern G, Bashti M, Quinn PJ, Miao Z, Sandor K, Zhang W, Chen GM, Ryu F, Logun M, Hall J, Tan K, Grupp SA, McClory SE, Lareau CA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, and Weber EW
- Subjects
- Animals, Humans, Mice, Cell Line, Tumor, Chromatin metabolism, Chromatin genetics, Gene Editing, Lymphocytes, Tumor-Infiltrating immunology, Lymphocytes, Tumor-Infiltrating metabolism, Forkhead Box Protein O1 metabolism, Immunologic Memory, Immunotherapy, Adoptive, Receptors, Chimeric Antigen immunology, Receptors, Chimeric Antigen metabolism, Receptors, Chimeric Antigen genetics, T-Lymphocytes immunology, T-Lymphocytes metabolism, T-Lymphocytes cytology
- Abstract
A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo
1 . The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6 , suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
3. Co-opting signalling molecules enables logic-gated control of CAR T cells.
- Author
-
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, Yin Y, Klysz D, Xu P, de la Serna EL, Dunn AR, Satpathy AT, Mackall CL, and Majzner RG
- Subjects
- Humans, Leukemia, B-Cell, Lymphoma, B-Cell, Cell Engineering methods, Immunotherapy, Adoptive adverse effects, Logic, Neoplasms immunology, Neoplasms metabolism, Neoplasms therapy, Receptors, Antigen, T-Cell immunology, Receptors, Antigen, T-Cell metabolism, Receptors, Chimeric Antigen immunology, Receptors, Chimeric Antigen metabolism, Signal Transduction, T-Lymphocytes immunology, T-Lymphocytes metabolism
- Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells
1,2 . Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5 ; however, a truly safe and effective logic-gated CAR has remained elusive6 . Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8 . In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.