1. A multi-interfacial FeOOH@NiCo 2 O 4 heterojunction as a highly efficient bifunctional electrocatalyst for overall water splitting.
- Author
-
Cao X, Sang Y, Wang L, Ding G, Yu R, and Geng B
- Abstract
Electrocatalytic water decomposition is the key to sustainable energy, and the design and synthesis of cost-effective electrocatalysts is the main objective of electrocatalytic water splitting. In this paper, multi-interfacial FeOOH@NiCo2O4 hybrid nanoflowers are prepared through a two-step hydrothermal reaction. In such heterostructures, NiCo2O4 nanoflowers are coated with a layer of FeOOH nanoparticles. In addition, the obtained electrocatalyst could provide abundant electroactive sites and the formation of FeOOH@NiCo2O4 nanointerfaces can also improve the charge transfer rate. As a result, under the HER and OER conditions, the prepared catalysts show an outstanding electrocatalytic performance. Moreover, in a two-electrode water splitting system, the FeOOH@NiCo2O4 heterostructure, as a dual-function electrocatalyst, needs a cell voltage of only 1.58 V at a current density of 10 mA cm-2. This study provides a facile and feasible method to construct different kinds of heterostructures as bifunctional electrocatalysts with multiple interfaces by a simple hydrothermal method.
- Published
- 2020
- Full Text
- View/download PDF