1. Controlled Crystallinity of a Sn-Doped α-Ga2O3 Epilayer Using Rapidly Annealed Double Buffer Layers
- Author
-
Kyoung-Ho Kim, Yun-Ji Shin, Seong-Min Jeong, Heesoo Lee, and Si-Young Bae
- Subjects
Ga2O3 ,mist CVD ,doping ,buffer layer ,mobility ,Chemistry ,QD1-999 - Abstract
Double buffer layers composed of (AlxGa1−x)2O3/Ga2O3 structures were employed to grow a Sn-doped α-Ga2O3 epitaxial thin film on a sapphire substrate using mist chemical vapor deposition. The insertion of double buffer layers improved the crystal quality of the upper-grown Sn-doped α-Ga2O3 thin films by blocking dislocation generated by the substrates. Rapid thermal annealing was conducted for the double buffer layers at phase transition temperatures of 700–800 °C. The slight mixing of κ and β phases further improved the crystallinity of the grown Sn-Ga2O3 thin film through local lateral overgrowth. The electron mobility of the Sn-Ga2O3 thin films was also significantly improved due to the smoothened interface and the diffusion of Al. Therefore, rapid thermal annealing with the double buffer layer proved advantageous in achieving strong electrical properties for Ga2O3 semiconductor devices within a shorter processing time.
- Published
- 2024
- Full Text
- View/download PDF