1. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design
- Author
-
Wenfu Liu, Xiaolei Guo, Shule Xing, Haizi Yao, Yinling Wang, Liuyang Bai, Qi Wang, Liang Zhang, Dachuan Wu, Yuxiao Zhang, Xiao Wang, and Yasha Yi
- Subjects
single nanowires ,silicon ,dual shells ,off-resonance ,absorption ,photocurrent ,Chemistry ,QD1-999 - Abstract
Single nanowires (NWs) are of great importance for optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that, with appropriate thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW) and the NW only coated with the outer shell (OSNW) and the inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the transition modes of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be engineered via tuning the thickness and the refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual-shell design and provides a new choice for designing high-efficiency single NW photovoltaic devices.
- Published
- 2020
- Full Text
- View/download PDF