Yingying Zhang, Qi Wang, Huimin Wang, Muqiang Jian, Xiao Liang, Zhe Yin, Chunya Wang, Mingchao Zhang, Xiaohui Yu, Kailun Xia, Youwen Long, Zhehong Liu, and Xiaoping Liang
Silk has outstanding mechanical properties and biocompatibility. It has been used to fabricate traditional textiles for thousands of years and can be produced in large scale. Silk materials are potentially attractive in modern textile electronics. However, silk is not electrically conductive, thus limiting its applications in electronics. Moreover, regenerated silk is generally rigid and brittle, which hinder post processing. Here we report the fabrication of conductive silk wire in which carbon nanotube (CNT) yarns are wrapped with fluffy and flexible silk nanofiber films. The silk nanofiber film was prepared by electrospinning and then wrapped around a rotating CNT yarn in situ. The obtained silk-sheathed CNT (CNT@Silk) wire has an insulating sheath, which protects the body against electrical shock. In addition, the fabricated wires exhibit a high electrical conductivity (3.1 × 104 S/m), good mechanical strength (16 cN/tex), excellent flexibility, and high durability. More importantly, the wires have an...