1. Depth Profiling Charge Accumulation from a Ferroelectric into a Doped Mott Insulator
- Author
-
Gunnar K. Pálsson, Hiroyuki Yamada, Stéphane Fusil, Manuel Bibes, Jean-Pascal Rueff, Julien E. Rault, Katia March, Alexandre Gloter, Maya Marinova, Vincent Garcia, Slavomír Nemšák, Christian Colliex, Charles S. Fadley, Agnès Barthélémy, C. Carrétéro, Odile Stéphan, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, ANR-11-BS10-0016,NOMILOPS,Nouvelles interfaces magnétoélectriques pour la spintronique faible puissance(2011), European Project: 312483,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2012-1,ESTEEM 2(2012), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Photoemission spectroscopy ,Oxide ,FOS: Physical sciences ,Bioengineering ,Nanotechnology ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Electric field ,Scanning transmission electron microscopy ,[CHIM]Chemical Sciences ,General Materials Science ,Condensed Matter - Materials Science ,business.industry ,Mechanical Engineering ,Mott insulator ,Electron energy loss spectroscopy ,Materials Science (cond-mat.mtrl-sci) ,Charge density ,General Chemistry ,Condensed Matter Physics ,Ferroelectricity ,chemistry ,ddc:540 ,Optoelectronics ,business - Abstract
The electric field control of functional properties is a crucial goal in oxide-based electronics. Non-volatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab-initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca1-xCexMnO3, thus providing insight on how interface-engineering can enhance these switching effects., Work supported by ERC Consolidator grant MINT (Contract No. 615759)
- Published
- 2015
- Full Text
- View/download PDF