1. The PARSEC view of star formation in galaxy centres: from protoclusters to star clusters in an early-type spiral.
- Author
-
Prieto, Almudena, Magris, C Gladis, Bruzual, Gustavo, Fernández-Ontiveros, Juan A, and Burkert, Andreas
- Subjects
ACTIVE galaxies ,STARBURSTS ,STAR formation ,GALAXY clusters ,STELLAR mass - Abstract
Understanding star formation in galaxies requires resolving the physical scale on which star formation often occurs: the scale of star clusters. We present a multiwavelength, eight-parsec resolution study of star formation in the circumnuclear star cluster and molecular gas rings of the early-type spiral NGC 1386. The cluster ring formed simultaneously ∼4 Myr ago. The clusters have similar properties in terms of mass and star formation rate, resembling those of H ii regions in the Milky Way disc. The molecular CO gas resolves into long filaments, which define a secondary ring detached from the cluster ring. Most clusters are in CO voids. Their separation with respect to the CO filaments is reminiscent of that seen in galaxy spiral arms. By analogy, we propose that a density wave through the disc of this galaxy may have produced this gap in the central kpc. The CO filaments fragment into strings of dense, unresolved clouds with no evidence of a stellar counterpart. These clouds may be the sites of a future population of clusters in the ring. The free-fall time of these clouds, ∼10 Myr, is close to the orbital time of the CO ring. This coincidence could lead to a synchronous bursting ring, as is the case for the current ring. The inward spiralling morphology of the CO filaments and co-spatiality with equivalent kpc-scale dust filaments are suggestive of their role as matter carriers from the galaxy outskirts to feed the molecular ring and a moderately active nucleus. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF