1. Boiling Technique-Based Food Processing Effects on the Bioactive and Antimicrobial Properties of Basil and Rosemary
- Author
-
Ahmad Mohammad Salamatullah, Khizar Hayat, Shaista Arzoo, Abdulhakeem Alzahrani, Mohammed Asif Ahmed, Hany M. Yehia, Tawfiq Alsulami, Nawal Al-Badr, Bandar Ali M Al-Zaied, and Mohammed Musaad Althbiti
- Subjects
food processing ,herbal tea ,boiling ,antioxidant activity ,antimicrobial activity ,Organic chemistry ,QD241-441 - Abstract
Rosemary (Rosmarinus officinalis) and basil (Ocimum sanctum Linn) are mostly used as herbal teas, made by steeping whole or ground herbs in boiling water. Hence, it is important to know the effect of boiling time on the bioactivity of these herbs. The effect of different boiling times (5, 10, and 15 min) on the antioxidant and antimicrobial properties, and some selected phenolic compounds of these herbs was examined in this study. Experimental results revealed that basil displayed the highest total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity when it was boiled for 5 min, and the lowest TPC was obtained when it was boiled for 15 min. On the other hand, rosemary had the highest TPC, TFC, and antioxidant potential after being boiled for 15 min, while it had the lowest after being boiled for 5 min. There was no growth inhibition of rosemary extracts against gram-negative bacteria, whereas higher growth inhibition was observed against gram-positive bacteria. The MIC and MBC of rosemary ethanolic extract against Listeria monocytogenes were 5 and 5 mg/mL and against B. subtilis were 10 and 10 mg/mL, respectively. While MIC and MBC of methanolic extract against L. monocytogenes were 5 and 5 mg/mL and against Bacillus subtilis were and 5 and 5 mg/mL, respectively. Salicylic acid was the most abundant (324.7 mg/100 g dry weight (dw)) phenolic compound in the rosemary sample boiled for 5 min, and acetyl salicylic acid was the most abundant (122.61 mg/10 g dw) phenolic compound in the basil sample boiled for 15 min.
- Published
- 2021
- Full Text
- View/download PDF