1. Hypocaloric Diet Initiated Post-Ischemia Provides Long-Term Neuroprotection and Promotes Peri-Infarct Brain Remodeling by Regulating Metabolic and Survival-Promoting Proteins.
- Author
-
de Carvalho TS, Sanchez-Mendoza EH, Schultz Moreira AR, Nascentes Melo LM, Wang C, Sardari M, Hagemann N, Doeppner TR, Kleinschnitz C, and Hermann DM
- Subjects
- Animals, Antioxidants metabolism, Atrophy, Brain pathology, Brain Ischemia blood, Brain Ischemia complications, Capillaries pathology, Cerebral Infarction blood, Cerebral Infarction complications, Glutathione Peroxidase metabolism, Liver metabolism, Male, Mice, Inbred C57BL, NAD metabolism, Sirtuin 1 metabolism, Stroke blood, Stroke pathology, Survival Analysis, Time Factors, Mice, Brain Ischemia metabolism, Brain Ischemia pathology, Cerebral Infarction metabolism, Cerebral Infarction pathology, Diet, Reducing, Nerve Tissue Proteins metabolism, Neuroprotection
- Abstract
Calorie restriction confers post-ischemic neuroprotection, when administered in a defined time window before ischemic stroke. How a hypocaloric diet influences stroke recovery when initiated after stroke has not been investigated. Male C57BL6/j mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately post-ischemia, mice were randomized to two groups receiving moderately hypocaloric (2286 kcal/kg food) or normocaloric (3518 kcal/kg) diets ad libitum. Animals were sacrificed at 3 or 56 days post-ischemia (dpi). Besides increased low density lipoprotein at 3 days and reduced alanine aminotransferase and increased urea at 56 days, no alterations of plasma markers were found in ischemic mice on hypocaloric diet. Body weight mildly decreased over 56 dpi by 7.4%. Hypocaloric diet reduced infarct volume in the acute stroke phase at 3 dpi and decreased brain atrophy, increased neuronal survival and brain capillary density in peri-infarct striatum and reduced motor coordination impairment in tight rope tests in the post-acute stroke phase over up to 56 dpi. The abundance of brain-derived neurotrophic factor, the NAD-dependent deacetylase and longevity protein sirtuin-1, the anti-oxidant glutathione peroxidase-3, and the ammonium detoxifier glutamine synthetase in the peri-infarct brain tissue was increased by hypocaloric diet. This study shows that a moderately hypocaloric diet that is initiated after stroke confers long-term neuroprotection and promotes peri-infarct brain remodeling.
- Published
- 2021
- Full Text
- View/download PDF