5 results on '"Cordier T"'
Search Results
2. Benthic monitoring of oil and gas offshore platforms in the North Sea using environmental DNA metabarcoding.
- Author
-
Mauffrey F, Cordier T, Apothéloz-Perret-Gentil L, Cermakova K, Merzi T, Delefosse M, Blanc P, and Pawlowski J
- Subjects
- Biodiversity, DNA Barcoding, Taxonomic, Environmental Monitoring, North Sea, DNA, Environmental
- Abstract
Since 2010, considerable efforts have been undertaken to monitor the environmental status of European marine waters and ensuring the development of methodological standards for the evaluation of this status. However, the current routine biomonitoring implicates time-consuming and costly manual sorting and morphological identification of benthic macrofauna. Environmental DNA (eDNA) metabarcoding represents an alternative to the traditional monitoring method with very promising results. Here, we tested it further by performing eDNA metabarcoding of benthic eukaryotic communities in the vicinity of two offshore oil and gas platforms in the North Sea. Three different genetic markers (18S V1V2, 18S V9 and COI) were used to assess the environmental pressures induced by the platforms. All markers showed patterns of alpha and beta diversity consistent with morphology-based macrofauna analyses. In particular, the communities' structure inferred from metabarcoding and morphological data significantly changed along distance gradients from the platforms. The impact of the operational discharges was also detected by the variation of biotic index values, AMBI index showing the best correlation between morphological and eDNA data sets. Finally, the sediment physicochemical parameters were used to build a local de novo pressure index that served as benchmark to test the potential of a taxonomy-free approach. Our study demonstrates that metabarcoding approach outperforms morphology-based approach and can be used as a cost and time-saving alternative solution to the traditional morphology-based monitoring in order to monitor more efficiently the impact of industrial activities on marine biodiversity., (© 2020 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
3. Monitoring the ecological status of rivers with diatom eDNA metabarcoding: A comparison of taxonomic markers and analytical approaches for the inference of a molecular diatom index.
- Author
-
Apothéloz-Perret-Gentil L, Bouchez A, Cordier T, Cordonier A, Guéguen J, Rimet F, Vasselon V, and Pawlowski J
- Subjects
- Biomarkers, DNA Barcoding, Taxonomic, Environmental Monitoring, Machine Learning, Diatoms genetics, Rivers
- Abstract
Recently, several studies demonstrated the usefulness of diatom eDNA metabarcoding as an alternative to assess the ecological quality of rivers and streams. However, the choice of the taxonomic marker as well as the methodology for data analysis differ between these studies, hampering the comparison of their results and effectiveness. The aim of this study was to compare two taxonomic markers commonly used in diatom metabarcoding and three distinct analytical approaches to infer a molecular diatom index. We used the values of classical morphological diatom index as a benchmark for this comparison. We amplified and sequenced both a fragment of the rbcL gene and the V4 region of the 18S rRNA gene for 112 epilithic samples from Swiss and French rivers. We inferred index values using three analytical approaches: by computing it directly from taxonomically assigned sequences, by calibrating de novo the ecovalues of all metabarcodes, and by using a supervised machine learning algorithm to train predictive models. In general, the values of index obtained using the two "taxonomy-free" approaches, encompassing molecular assignment and machine learning, were closer correlated to the values of the morphological index than the values based on taxonomically assigned sequences. The correlations of the three analytical approaches were higher in the case of rbcL compared to the 18S marker, highlighting the importance of the reference database which is more complete for the rbcL marker. Our study confirms the effectiveness of diatom metabarcoding as an operational tool for rivers ecological quality assessment and shows that the analytical approaches by-passing the taxonomic assignments are particularly efficient when reference databases are incomplete., (© 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
4. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes.
- Author
-
Frühe L, Cordier T, Dully V, Breiner HW, Lentendu G, Pawlowski J, Martins C, Wilding TA, and Stoeck T
- Subjects
- Animals, Aquaculture, Biodiversity, DNA Barcoding, Taxonomic, Environment, Environmental Monitoring, Norway, Supervised Machine Learning, Ecosystem, Salmon genetics
- Abstract
Increasing anthropogenic impact and global change effects on natural ecosystems has prompted the development of less expensive and more efficient bioassessments methodologies. One promising approach is the integration of DNA metabarcoding in environmental monitoring. A critical step in this process is the inference of ecological quality (EQ) status from identified molecular bioindicator signatures that mirror environmental classification based on standard macroinvertebrate surveys. The most promising approaches to infer EQ from biotic indices (BI) are supervised machine learning (SML) and the calculation of indicator values (IndVal). In this study we compared the performance of both approaches using DNA metabarcodes of bacteria and ciliates as bioindicators obtained from 152 samples collected from seven Norwegian salmon farms. Results from standard macroinvertebrate-monitoring of the same samples were used as reference to compare the accuracy of both approaches. First, SML outperformed the IndVal approach to infer EQ from eDNA metabarcodes. The Random Forest (RF) algorithm appeared to be less sensitive to noisy data (a typical feature of massive environmental sequence data sets) and uneven data coverage across EQ classes (a typical feature of environmental compliance monitoring scheme) compared to a widely used method to infer IndVals for the calculation of a BI. Second, bacteria allowed for a more accurate EQ assessment than ciliate eDNA metabarcodes. For the implementation of DNA metabarcoding into routine monitoring programmes to assess EQ around salmon aquaculture cages, we therefore recommend bacterial DNA metabarcodes in combination with SML to classify EQ categories based on molecular signatures., (© 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
5. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap.
- Author
-
Cordier T, Alonso-Sáez L, Apothéloz-Perret-Gentil L, Aylagas E, Bohan DA, Bouchez A, Chariton A, Creer S, Frühe L, Keck F, Keeley N, Laroche O, Leese F, Pochon X, Stoeck T, Pawlowski J, and Lanzén A
- Subjects
- Biodiversity, DNA Barcoding, Taxonomic, Environmental Monitoring, Ecosystem, Metagenomics
- Abstract
A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs., (© 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.