1. Activation of automethylated PRC2 by dimerization on chromatin.
- Author
-
Sauer PV, Pavlenko E, Cookis T, Zirden LC, Renn J, Singhal A, Hunold P, Hoehne-Wiechmann MN, van Ray O, Kaschani F, Kaiser M, Hänsel-Hertsch R, Sanbonmatsu KY, Nogales E, and Poepsel S
- Subjects
- Humans, Methylation, Nucleosomes metabolism, Nucleosomes genetics, Allosteric Regulation, HEK293 Cells, Protein Binding, Polycomb Repressive Complex 2 metabolism, Polycomb Repressive Complex 2 genetics, Chromatin metabolism, Chromatin genetics, Histones metabolism, Histones genetics, Enhancer of Zeste Homolog 2 Protein metabolism, Enhancer of Zeste Homolog 2 Protein genetics, Protein Multimerization
- Abstract
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism. Here, we show that human PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a previously unknown mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification-coupled dimerization in the regulation of chromatin-modifying complexes., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF