Previously, we isolated and characterized attacin from Spodoptera exigua and a coleoptericin-like protein from Protaetia brevitarsis seulensis. In this study, we fused these two genes encoding antimicrobial proteins to obtain a hybrid protein with enhanced antimicrobial activity. To fuse the two antimicrobial proteins, we employed helical and non-helical linker sequences that function as inter-domain linkers in proteins. We used the Gly-Gly-Gly-Gly-Ser peptide as a non-helical linker. The hybrid protein produced using this linker showed less antimicrobial activity against Escherichia coli, Bacillus subtilis, Burkholderia glumae, Pseudomonas corrugate, and Erwinia rhapontici than either of the two parental antimicrobial proteins. In addition, the MIC value of the hybrid protein was 23.1 μM, which indicates poor activity against E. coli. When we used three Glu-Ala-Ala-Ala-Lys (EAAAK) peptide sequences as a helical linker to fuse the two proteins, the resultant hybrid protein had much higher antimicrobial activity than the parental antimicrobial proteins. In particular, this hybrid protein had strong antimicrobial activity against P. corrugate. These results indicate that the EAAAK motif can be used to effectively separate two antimicrobial proteins and produce a hybrid protein with more antimicrobial activity than either of the parent proteins. [ABSTRACT FROM AUTHOR]