Globalization and the expansion of transport networks has transformed migration into a major policy issue because of its effects on a range of phenomena, including resource flows in economics, urbanization, as well as the epidemiology of infectious diseases. Quantifying and modeling human migration can contribute towards a better understanding of the nature of migration and help develop evidence-based interventions for disease control policy, economic development, and resource allocation. In this study we paired census microdata from 10 countries in sub-Saharan Africa with additional spatial datasets to develop models for the internal migration flows in each country, including key drivers that reflect the changing social, demographic, economic, and environmental landscapes. We assessed how well these gravity-type spatial interaction models can both explain and predict migration. Results show that the models can explain up to 87 percent of internal migration, can predict future within-country migration with correlations of up to 0.91, and can also predict migration in other countries with correlations of up to 0.72. Findings show that such models are useful tools for understanding migration as well as predicting flows in regions where data are sparse, and can contribute towards strategic economic development, planning, and disease control targeting. [ABSTRACT FROM AUTHOR]