6 results on '"Caccuri, F"'
Search Results
2. TLR3 and TLR7 RNA Sensor Activation during SARS-CoV-2 Infection.
- Author
-
Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, Fernandez M, Caccuri F, Caruso A, and Rizzo R
- Abstract
(1) Background: Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the coronavirus disease (COVID-19) that has led to a pandemic that began in March 2020. The role of the SARS-CoV-2 components on innate and adaptive immunity is still unknown. We investigated the possible implication of pathogen-associated molecular patterns (PAMPs)-pattern recognition receptors (PRRs) interaction. (2) Methods: We infected Calu-3/MRC-5 multicellular spheroids (MTCSs) with a SARS-CoV-2 clinical strain and evaluated the activation of RNA sensors, transcription factors, and cytokines/interferons (IFN) secretion, by quantitative real-time PCR, immunofluorescence, and ELISA. (3) Results: Our results showed that the SARS-CoV-2 infection of Calu-3/MRC-5 multicellular spheroids induced the activation of the TLR3 and TLR7 RNA sensor pathways. In particular, TLR3 might act via IRF3, producing interleukin (IL)-1α, IL-1β, IL-4, IL-6, and IFN-α and IFN-β, during the first 24 h post-infection. Then, TLR3 activates the NFκB transduction pathway, leading to pro-inflammatory cytokine secretion. Conversely, TLR7 seems to mainly act via NFκB, inducing type 1 IFN, IFN-γ, and IFN-λ3, starting from the 48 h post-infection. (4) Conclusion: We showed that both TLR3 and TLR7 are involved in the control of innate immunity during lung SARS-CoV-2 infection. The activation of TLRs induced pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-4, and IL-6, as well as interferons. TLRs could be a potential target in controlling the infection in the early stages of the disease.
- Published
- 2021
- Full Text
- View/download PDF
3. SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells.
- Author
-
Caccuri F, Bugatti A, Zani A, De Palma A, Di Silvestre D, Manocha E, Filippini F, Messali S, Chiodelli P, Campisi G, Fiorentini S, Facchetti F, Mauri P, and Caruso A
- Abstract
SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells (HL-mECs) in the absence of cytopathic effects and release of infectious particles. Preliminary data point to the role of integrins in SARS-CoV-2 entry into HL-mECs in the absence of detectable ACE2 expression. Following infection, HL-mECs were found to release a plethora of pro-inflammatory and pro-angiogenic molecules, as assessed by microarray analyses. This conditioned microenvironment stimulated HL-mECs to acquire an angiogenic phenotype. Proteome analysis confirmed a remodeling of SARS-CoV-2-infected HL-mECs to inflammatory and angiogenic responses and highlighted the expression of antiviral molecules as annexin A6 and MX1. These results support the hypothesis of a direct role of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early phases of infection. The construction of virus-host interactomes will be instrumental to identify potential therapeutic targets for COVID-19 aimed to inhibit HL-mEC-sustained inflammation and angiogenesis upon SARS-CoV-2 infection.
- Published
- 2021
- Full Text
- View/download PDF
4. Serological Response to SARS-CoV-2 in Health Care Workers Employed in a Large Tertiary Hospital in Lombardy, Northern Italy.
- Author
-
Comelli A, Focà E, Sansone E, Tomasi C, Albini E, Quiros-Roldan E, Tomasoni LR, Sala E, Bonfanti C, Caccuri F, Caruso A, De Palma G, and Castelli F
- Abstract
Background: COVID-19 pandemic is requesting unprecedented efforts by health-care workers (HCWs) in all countries, and especially in Italy during the first semester of 2020., Methods: This is a retrospective, observational study conducted at the Spedali Civili General Hospital, in Brescia, Northern Italy during the SARS CoV-2 pandemic in the first semester of 2020. Serum samples from HCWs were tested for SARS-CoV-2 spike protein-specific antibodies. An online survey was used to collect demographic, clinical, and epidemiological data., Results: Of the 1893 HCWs included, 433 (22.9%) were found seropositive for SARS-CoV-2 IgG. The cumulative prevalence of SARS-CoV-2 infection (antibodies production or past positive RT-PCR on nasal/throat swab) was 25.1% (475/1893). Fifty-six out of 433 (13%) seropositive participants declared to have been asymptomatic during the study period. The development of COVID-19 signs or symptoms is the main determinant of seropositivity (OR: 11.3, p < 0.0001) along with their duration and severity. 40/290 (14.5%) HCWs with documented positive RT-PCR during the study period did not show any detectable antibody response. IgG levels positively correlate with age, COVID-19-compatible signs and symptoms experienced and their duration., Conclusions: In this study, carried out in one of the most affected areas in Europe, we demonstrate that most HCWs with COVID-19 related symptoms develop a spike protein-specific antibodies with potential neutralizing effect.
- Published
- 2021
- Full Text
- View/download PDF
5. Human Metapneumovirus Establishes Persistent Infection in Lung Microvascular Endothelial Cells and Primes a Th2-Skewed Immune Response.
- Author
-
Bugatti A, Marsico S, Fogli M, Roversi S, Messali S, Bosisio D, Giagulli C, Caruso A, Sozzani S, Fiorentini S, and Caccuri F
- Abstract
Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se , could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.
- Published
- 2020
- Full Text
- View/download PDF
6. Prevalence of Non-B HIV-1 Subtypes in North Italy and Analysis of Transmission Clusters Based on Sequence Data Analysis.
- Author
-
Lorenzin G, Gargiulo F, Caruso A, Caccuri F, Focà E, Celotti A, Quiros-Roldan E, Izzo I, Castelli F, and De Francesco MA
- Abstract
HIV-1 diversity is increasing in European countries due to immigration flows, as well as travels and human mobility, leading to the circulation of both new viral subtypes and new recombinant forms, with important implications for public health. We analyzed 710 HIV-1 sequences comprising protease and reverse-transcriptase (PR/RT) coding regions, sampled from 2011 to 2017, from naive patients in Spedali Civili Hospital, Brescia, Italy. Subtyping was performed by using a combination of different tools; the phylogenetic analysis with a structured coalescence model and Makarov Chain Monte Carlo was used on the datasets, to determine clusters and evolution. We detected 304 (43%) patients infected with HIV-1 non-B variants, of which only 293 sequences were available, with four pure subtypes and five recombinant forms; subtype F1 (17%) and CRF02_AG (51.1%) were most common. Twenty-five transmission clusters were identified, three of which included >10 patients, belonging to subtype CRF02_AG and subtype F. Most cases of alleged transmission were between heterosexual couples. Probably due to strong migratory flows, we have identified different subtypes with particular patterns of recombination or, as in the case of the subtype G (18/293, 6.1%), to a complete lack of relationship between the sequenced strains, revealing that they are all singletons. Continued HIV molecular surveillance is most important to analyze the dynamics of the boost of transmission clusters in order to implement public health interventions aimed at controlling the HIV epidemic., Competing Interests: The authors declare no conflicts of interest.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.