3 results on '"Jaspan HB"'
Search Results
2. Microbial function and genital inflammation in young South African women at high risk of HIV infection.
- Author
-
Alisoltani A, Manhanzva MT, Potgieter M, Balle C, Bell L, Ross E, Iranzadeh A, du Plessis M, Radzey N, McDonald Z, Calder B, Allali I, Mulder N, Dabee S, Barnabas S, Gamieldien H, Godzik A, Blackburn JM, Tabb DL, Bekker LG, Jaspan HB, Passmore JS, and Masson L
- Subjects
- Adolescent, Female, Humans, Inflammation pathology, Proteomics, RNA, Ribosomal, 16S genetics, Risk Factors, South Africa epidemiology, Young Adult, HIV Infections transmission, Inflammation microbiology, Vagina microbiology, Vagina pathology
- Abstract
Background: Female genital tract (FGT) inflammation is an important risk factor for HIV acquisition. The FGT microbiome is closely associated with inflammatory profile; however, the relative importance of microbial activities has not been established. Since proteins are key elements representing actual microbial functions, this study utilized metaproteomics to evaluate the relationship between FGT microbial function and inflammation in 113 young and adolescent South African women at high risk of HIV infection. Women were grouped as having low, medium, or high FGT inflammation by K-means clustering according to pro-inflammatory cytokine concentrations., Results: A total of 3186 microbial and human proteins were identified in lateral vaginal wall swabs using liquid chromatography-tandem mass spectrometry, while 94 microbial taxa were included in the taxonomic analysis. Both metaproteomics and 16S rRNA gene sequencing analyses showed increased non-optimal bacteria and decreased lactobacilli in women with FGT inflammatory profiles. However, differences in the predicted relative abundance of most bacteria were observed between 16S rRNA gene sequencing and metaproteomics analyses. Bacterial protein functional annotations (gene ontology) predicted inflammatory cytokine profiles more accurately than bacterial relative abundance determined by 16S rRNA gene sequence analysis, as well as functional predictions based on 16S rRNA gene sequence data (p < 0.0001). The majority of microbial biological processes were underrepresented in women with high inflammation compared to those with low inflammation, including a Lactobacillus-associated signature of reduced cell wall organization and peptidoglycan biosynthesis. This signature remained associated with high FGT inflammation in a subset of 74 women 9 weeks later, was upheld after adjusting for Lactobacillus relative abundance, and was associated with in vitro inflammatory cytokine responses to Lactobacillus isolates from the same women. Reduced cell wall organization and peptidoglycan biosynthesis were also associated with high FGT inflammation in an independent sample of ten women., Conclusions: Both the presence of specific microbial taxa in the FGT and their properties and activities are critical determinants of FGT inflammation. Our findings support those of previous studies suggesting that peptidoglycan is directly immunosuppressive, and identify a possible avenue for biotherapeutic development to reduce inflammation in the FGT. To facilitate further investigations of microbial activities, we have developed the FGT-DB application that is available at http://fgtdb.org/ . Video Abstract.
- Published
- 2020
- Full Text
- View/download PDF
3. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity.
- Author
-
Nyangahu DD, Lennard KS, Brown BP, Darby MG, Wendoh JM, Havyarimana E, Smith P, Butcher J, Stintzi A, Mulder N, Horsnell W, and Jaspan HB
- Subjects
- Animals, Animals, Newborn microbiology, Anti-Bacterial Agents pharmacology, Female, Gastrointestinal Microbiome genetics, Immunoglobulin G immunology, Immunoglobulin M immunology, Intestines microbiology, Lymphocyte Count, Mice, Mice, Inbred BALB C, Pregnancy, Vancomycin pharmacology, Adaptive Immunity immunology, Animals, Newborn immunology, Antibodies, Bacterial immunology, B-Lymphocytes immunology, Breast Feeding, CD4-Positive T-Lymphocytes immunology, Gastrointestinal Microbiome immunology
- Abstract
Background: Early life microbiota is an important determinant of immune and metabolic development and may have lasting consequences. The maternal gut microbiota during pregnancy or breastfeeding is important for defining infant gut microbiota. We hypothesized that maternal gut microbiota during pregnancy and breastfeeding is a critical determinant of infant immunity. To test this, pregnant BALB/c dams were fed vancomycin for 5 days prior to delivery (gestation; Mg), 14 days postpartum during nursing (Mn), or during gestation and nursing (Mgn), or no vancomycin (Mc). We analyzed adaptive immunity and gut microbiota in dams and pups at various times after delivery., Results: In addition to direct alterations to maternal gut microbial composition, pup gut microbiota displayed lower α-diversity and distinct community clusters according to timing of maternal vancomycin. Vancomycin was undetectable in maternal and offspring sera, therefore the observed changes in the microbiota of stomach contents (as a proxy for breastmilk) and pup gut signify an indirect mechanism through which maternal intestinal microbiota influences extra-intestinal and neonatal commensal colonization. These effects on microbiota influenced both maternal and offspring immunity. Maternal immunity was altered, as demonstrated by significantly higher levels of both total IgG and IgM in Mgn and Mn breastmilk when compared to Mc. In pups, lymphocyte numbers in the spleens of Pg and Pn were significantly increased compared to Pc. This increase in cellularity was in part attributable to elevated numbers of both CD4+ T cells and B cells, most notable Follicular B cells., Conclusion: Our results indicate that perturbations to maternal gut microbiota dictate neonatal adaptive immunity.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.