1. Screening for cysteine-stabilized scaffolds for developing proteolytic-resistant AMPs.
- Author
-
Maximiano MR, Rezende SB, Rios TB, Leite ML, Vilas Boas LCP, da Cunha NB, Pires ÁDS, Cardoso MH, and Franco OL
- Subjects
- Animals, Anti-Bacterial Agents pharmacology, Antimicrobial Peptides, Molecular Dynamics Simulation, Cysteine, Peptides chemistry, Peptides pharmacology
- Abstract
Antimicrobial peptides (AMP) are present in all organisms and can present several activities and potential applications in human and animal health. Screening these molecules scaffolds represents a key point for discovering and developing novel biotechnological products, including antimicrobial, antiviral and anticancer drugs candidates and insecticidal molecules with potential applications in agriculture. Therefore, considering the amount of biological data currently deposited on public databases, computational approaches have been commonly used to predicted and identify novel cysteine-rich peptides scaffolds with known or unknown biological properties. Here, we describe a step-by-step in silico screening for cysteine-rich peptides employing molecular modeling (with a core focus on comparative modeling) and atomistic molecular dynamics simulations. Moreover, we also present the concept of additional tools aiming at the computer-aided screening of new Cs-AMPs based drug candidates. After the computational screening and peptide chemical synthesis, we also provide the reader with a step-by-step in vitro activity evaluation of these candidates, including antibacterial, antifungal, and antiviral assays., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF