1. Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting.
- Author
-
Zhou, Junwei, Qin, Xizhong, Ding, Yuanfeng, and Ma, Haodong
- Subjects
- *
TRAFFIC flow , *TRAFFIC estimation , *DIFFERENTIAL equations , *INTELLIGENT transportation systems , *URBAN growth - Abstract
Traffic flow forecasting is the foundation of intelligent transportation systems. Accurate traffic forecasting is crucial for intelligent traffic management and urban development. However, achieving highly accurate traffic flow prediction is challenging due to road networks' complex dynamic spatial and temporal dependencies. Previous work using predefined static adjacency matrices in graph convolutional networks needs to be revised to reflect the dynamic spatial dependencies in the traffic system. In addition, most current methods ignore the hidden dynamic spatial–temporal correlations between road network nodes as they evolve. We propose a spatial–temporal dynamic graph differential equation network (ST-DGDE) for traffic prediction to address the above problems. First, the model captures the dynamic changes between spatial nodes over time through a dynamic graph learning network. Then, dynamic graph differential equations (DGDE) are used to learn the spatial–temporal dynamic relationships in the global space that change continuously over time. Finally, static adjacency matrices are constructed by static node embedding. The generated dynamic and predefined static graphs are fused and input into a gated temporal causal convolutional network to jointly capture the fixed long-term spatial association patterns and achieve a global receiver domain that facilitates long-term prediction. Experiments of our model on two natural traffic flow datasets show that ST-DGDE outperforms other baselines. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF