1. A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties
- Author
-
Ya-xiang Yuan and Xinwei Liu
- Subjects
Mathematical optimization ,General Mathematics ,Limit point ,Approximation algorithm ,Penalty method ,Algorithm ,Stationary point ,Software ,Interior point method ,Nonlinear programming ,Local convergence ,Mathematics ,Slack variable - Abstract
We present a null-space primal-dual interior-point algorithm for solving nonlinear optimization problems with general inequality and equality constraints. The algorithm approximately solves a sequence of equality constrained barrier subproblems by computing a range-space step and a null-space step in every iteration. The l2 penalty function is taken as the merit function. Under very mild conditions on range-space steps and approximate Hessians, without assuming any regularity, it is proved that either every limit point of the iterate sequence is a Karush-Kuhn-Tucker point of the barrier subproblem and the penalty parameter remains bounded, or there exists a limit point that is either an infeasible stationary point of minimizing the l 2 norm of violations of constraints of the original problem, or a Fritz-John point of the original problem. In addition, we analyze the local convergence properties of the algorithm, and prove that by suitably controlling the exactness of range-space steps and selecting the barrier parameter and Hessian approximation, the algorithm generates a superlinearly or quadratically convergent step. The conditions on guaranteeing that all slack variables are still positive for a full step are presented.
- Published
- 2009