1. A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles
- Author
-
Nicolas Seguin, Frédéric Coquel, Khaled Saleh, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Modélisation mathématique, calcul scientifique (MMCS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Numerical Analysis, Geophysics and Ecology (ANGE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Finite volume method ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Discretization ,Applied Mathematics ,Numerical analysis ,Mathematical analysis ,relaxation techniques ,Dissipation ,Solver ,Riemann problem ,Riemann solver ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,symbols.namesake ,AMS subject classification: 76S05, 35L60, 35F55 ,Modeling and Simulation ,symbols ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Relaxation (approximation) ,Discontinuous nozzle flows ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
We propose in this work an original finite volume scheme for the system of gas dynamics in a nozzle. Our numerical method is based on a piecewise constant discretization of the cross-section and on an approximate Riemann solver in the sense of Harten, Lax and van Leer. The solver is obtained by the use of a relaxation approximation that leads to a positive and entropy satisfying numerical scheme for all variation of section, even discontinuous sections with arbitrary large jumps. To do so, we introduce, in the first step of the relaxation solver, a singular dissipation measure superposed on the standing wave, which enables us to control the approximate speeds of sound and thus the time step, even for extreme initial data.
- Published
- 2014
- Full Text
- View/download PDF