1. Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications.
- Author
-
Araújo CM, das Virgens Santana M, do Nascimento Cavalcante A, Nunes LCC, Bertolino LC, de Sousa Brito CAR, Barreto HM, and Eiras C
- Subjects
- Anti-Bacterial Agents, Escherichia coli drug effects, Green Chemistry Technology, Metal Nanoparticles chemistry, Microbial Sensitivity Tests, Microscopy, Electron, Scanning, Microscopy, Electron, Transmission, Nanocomposites chemistry, Silver chemistry, Spectrometry, X-Ray Emission, Spectroscopy, Fourier Transform Infrared, Staphylococcus aureus drug effects, X-Ray Diffraction, Anacardium chemistry, Magnesium Compounds chemistry, Plant Gums chemistry, Silicon Compounds chemistry, Silver pharmacology
- Abstract
Nanocomposite materials have been proposed to enhance the properties of different materials. In this study, palygorskite (Pal) clay is proposed as a support matrix for silver nanoparticles stabilised with cashew gum (Anacardium occidentale L.) (AgNPs-CG), producing the Pal/AgNPs-CG nanocomposite, whose bactericidal activity was studied. AgNPs-CG was synthesised using a green method in which CG acted as a reducing and stabilising agent for these nanostructures. AgNPs-CGs were subsequently characterised then adsorbed to the Pal surface, which was previously treated to remove impurities such as quartz. Pal and Pal/AgNPs-CG were characterised by X-ray diffraction, specific surface area, thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. The antibacterial activity assay by the direct contact method showed that the synergistic effect of the combination of AgNPs-CG and Pal increased the bactericidal effect of the nanomaterial compared with the AgNPs-CG activity, reaching a percentage inhibition of up to 70.2% against E. coli and 85.3% against S. aureus. Nanocomposite atoxicity was demonstrated by the Artemia Salina model. Thus, the Pal/AgNPs-CG nanocomposite emerges as a nanomaterial with potential antibacterial applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF