1. Mercury accumulation, biomagnification, and relationships to δ 13 C, δ 15 N and δ 34 S of fishes and marine mammals in a coastal Arctic marine food web.
- Author
-
Yurkowski DJ, McCulloch E, Ogloff WR, Johnson KF, Amiraux R, Basu N, Elliott KH, Fisk AT, Ferguson SH, Harris LN, Hedges KJ, Jacobs K, Loewen TN, Matthews CJD, Mundy CJ, Niemi A, Rosenberg B, Watt CA, and McKinney MA
- Subjects
- Animals, Food Chain, Bioaccumulation, Environmental Monitoring, Fishes, Cetacea, Mercury analysis, Water Pollutants, Chemical analysis, Caniformia, Beluga Whale
- Abstract
Combining mercury and stable isotope data sets of consumers facilitates the quantification of whether contaminant variation in predators is due to diet, habitat use and/or environmental factors. We investigated inter-species variation in total Hg (THg) concentrations, trophic magnification slope between δ
15 N and THg, and relationships of THg with δ13 C and δ34 S in 15 fish and four marine mammal species (249 individuals in total) in coastal Arctic waters. Median THg concentration in muscle varied between species ranging from 0.08 ± 0.04 μg g-1 dw in capelin to 3.10 ± 0.80 μg g-1 dw in beluga whales. Both δ15 N (r2 = 0.26) and δ34 S (r2 = 0.19) best explained variation in log-THg across consumers. Higher THg concentrations occurred in higher trophic level species that consumed more pelagic-associated prey than consumers that rely on the benthic microbial-based food web. Our study illustrates the importance of using a multi-isotopic approach that includes δ34 S when investigating trophic Hg dynamics in coastal marine systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF