1. Aspecific binding of anti-NK1.1 antibodies on myeloid cells in an experimental model for malaria-associated acute respiratory distress syndrome.
- Author
-
Pollenus E, Prenen F, Possemiers H, Knoops S, Mitera T, Lamote J, De Visscher A, Vandermosten L, Pham TT, Matthys P, and Van den Steen PE
- Subjects
- Mice, Animals, Mice, Inbred C57BL, Killer Cells, Natural, Myeloid Cells pathology, Respiratory Distress Syndrome pathology, Malaria complications
- Abstract
Background: Conventional natural killer (cNK) cells play an important role in the innate immune response by directly killing infected and malignant cells and by producing pro- and anti-inflammatory cytokines. Studies on their role in malaria and its complications have resulted in conflicting results., Methods: Using the commonly used anti-NK1.1 depletion antibodies (PK136) in an in-house optimized experimental model for malaria-associated acute respiratory distress syndrome (MA-ARDS), the role of cNK cells was investigated. Moreover, flow cytometry was performed to characterize different NK cell populations., Results: While cNK cells were found to be dispensable in the development of MA-ARDS, the appearance of a NK1.1
+ cell population was observed in the lungs upon infection despite depletion with anti-NK1.1. Detailed characterization of the unknown population revealed that this population consisted of a mixture of monocytes and macrophages that bind the anti-NK1.1 antibody in an aspecific way. This aspecific binding may occur via Fcγ receptors, such as FcγR4. In contrast, in vivo depletion using anti-NK1.1 antibodies was proved to be specific for cNK cells., Conclusion: cNK cells are dispensable in the development of experimental MA-ARDS. Moreover, careful flow cytometric analysis, with a critical mindset in relation to potential aspecific binding despite the use of commercially available Fc blocking reagents, is critical to avoid misinterpretation of the results., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF