1. Pose is all you need: the pose only group activity recognition system (POGARS)
- Author
-
Haritha Thilakarathne, Aiden Nibali, Zhen He, and Stuart Morgan
- Subjects
FOS: Computer and information sciences ,Engineering ,Hardware and Architecture ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,Information and computing sciences ,Computer Vision and Pattern Recognition ,Software ,Computer Science Applications - Abstract
We introduce a novel deep learning based group activity recognition approach called the Pose Only Group Activity Recognition System (POGARS), designed to use only tracked poses of people to predict the performed group activity. In contrast to existing approaches for group activity recognition, POGARS uses 1D CNNs to learn spatiotemporal dynamics of individuals involved in a group activity and forgo learning features from pixel data. The proposed model uses a spatial and temporal attention mechanism to infer person-wise importance and multi-task learning for simultaneously performing group and individual action classification. Experimental results confirm that POGARS achieves highly competitive results compared to state-of-the-art methods on a widely used public volleyball dataset despite only using tracked pose as input. Further our experiments show by using pose only as input, POGARS has better generalization capabilities compared to methods that use RGB as input., 12 pages, 7 figures
- Published
- 2022
- Full Text
- View/download PDF