Transition aluminum oxides, such as γ-Al2O3or alumina, are widely used in many different technical applications that rely on the surface reactivity of this material at the solid liquid interface. The speciation of surface sites of this material confronts several obstacles. On the one hand, alumina is a poorly crystalline oxide, thus allowing for a limited amount of empirical structural information for an important number of surface sites with different trends in reactivity and, on the other hand, it is a metastable material. In this work, we show several ways in which the multisite complexation model, combined with atomistic information from density functional theory and ab initio molecular dynamics (AIMD), can manage to perform speciation calculations of γ-Al2O3surface sites at the solid liquid interface. Although the results are in good qualitative agreement with experimental titration curves, and they can serve as a guide for the interpretation of the reactivity of this material at the initial stages of an impregnation experiment and chemical weathering phenomena, this work highlights the need of more complex AIMD simulations to accurately model these phenomena in γ-Al2O3surface/liquid interfaces.