1. Precision screening for familial hypercholesterolaemia: a machine learning study applied to electronic health encounter data.
- Author
-
Myers KD, Knowles JW, Staszak D, Shapiro MD, Howard W, Yadava M, Zuzick D, Williamson L, Shah NH, Banda JM, Leader J, Cromwell WC, Trautman E, Murray MF, Baum SJ, Myers S, Gidding SS, Wilemon K, and Rader DJ
- Subjects
- Adult, Aged, Aged, 80 and over, Early Diagnosis, Female, Humans, Male, Middle Aged, Precision Medicine, Hyperlipoproteinemia Type II diagnosis, Machine Learning, Mass Screening methods, Telemedicine
- Abstract
Background: Cardiovascular outcomes for people with familial hypercholesterolaemia can be improved with diagnosis and medical management. However, 90% of individuals with familial hypercholesterolaemia remain undiagnosed in the USA. We aimed to accelerate early diagnosis and timely intervention for more than 1·3 million undiagnosed individuals with familial hypercholesterolaemia at high risk for early heart attacks and strokes by applying machine learning to large health-care encounter datasets., Methods: We trained the FIND FH machine learning model using deidentified health-care encounter data, including procedure and diagnostic codes, prescriptions, and laboratory findings, from 939 clinically diagnosed individuals with familial hypercholesterolaemia (395 of whom had a molecular diagnosis) and 83 136 individuals presumed free of familial hypercholesterolaemia, sampled from four US institutions. The model was then applied to a national health-care encounter database (170 million individuals) and an integrated health-care delivery system dataset (174 000 individuals). Individuals used in model training and those evaluated by the model were required to have at least one cardiovascular disease risk factor (eg, hypertension, hypercholesterolaemia, or hyperlipidemia). A Health Insurance Portability and Accountability Act of 1996-compliant programme was developed to allow providers to receive identification of individuals likely to have familial hypercholesterolaemia in their practice., Findings: Using a model with a measured precision (positive predictive value) of 0·85, recall (sensitivity) of 0·45, area under the precision-recall curve of 0·55, and area under the receiver operating characteristic curve of 0·89, we flagged 1 331 759 of 170 416 201 patients in the national database and 866 of 173 733 individuals in the health-care delivery system dataset as likely to have familial hypercholesterolaemia. Familial hypercholesterolaemia experts reviewed a sample of flagged individuals (45 from the national database and 103 from the health-care delivery system dataset) and applied clinical familial hypercholesterolaemia diagnostic criteria. Of those reviewed, 87% (95% Cl 73-100) in the national database and 77% (68-86) in the health-care delivery system dataset were categorised as having a high enough clinical suspicion of familial hypercholesterolaemia to warrant guideline-based clinical evaluation and treatment., Interpretation: The FIND FH model successfully scans large, diverse, and disparate health-care encounter databases to identify individuals with familial hypercholesterolaemia., Funding: The FH Foundation funded this study. Support was received from Amgen, Sanofi, and Regeneron., (Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF