This study was performed to evaluate the effect of anorganic bone mineral (ABM) coated with Tetra-Cell Adhesion Molecule (T-CAM) for bone formation in rabbit calvarial defects and compare the capability of bone formation in ABM coated with T-CAM (ABM/T-CAM) to that in commercially available ABM coated with a synthetic peptide (P-15) which mimics the cell-binding domain of type I collagen, PepGen P-15TM. T-CAM composed of four cell adhesion molecules (RGD, PHSRN, EPDIM, and YH) was synthesized and ABM/T-CAM were prepared by absorbing T-CAM on ABM (OsteoGraf/N-300; Densply Friadent Ceramed Corp., USA). Two 9-mm diameter, full-thickness calvarial defects were made in each rabbit parietal bone and sixteen adult male rabbits were used in this experiment. The defects were reconstructed according to four treatment groups: unfilled, BM-grafted, PepGen P-15TM-grafted, and ABM/T-CAM-grafted. The animals were sacrificed at 2 and 4 weeks after surgery for histologic and histomorphometric evaluation. An active new bone formation were observed in the defects of ABM/T-CAM and PepGen P-15TM grafted groups at 2 and 4 weeks of healing in histologic observation. The results of histomorphometric analysis revealed higher new bone formation in ABM/T-CAM-grafted (14.62±0.6% at 2 weeks, 15.33±2.4% at 4 weeks) and PepGen P-15TM-grafted (12.46±1.0% at 2 weeks, 18.14±1.7% at 4 weeks) groups than in unfilled control (7.03±2.3% at 2 weeks, 8.71±3.4% at 4 weeks) and ABMgrafted (6.59±1.7% at 2 weeks, 9.25±0.8% at 4 weeks) groups at 2 and 4 weeks of healing with statistical significance (P