Malaria needs new strategies for its control. Plasmodium spp., the causative agent of malaria, is transmitted by mosquitoes. These parasites develop into oocysts and sporozoites in the body of the mosquitoes. A deeper understanding of oocysts that produce the infectious form of the parasite, sporozoites, can facilitate the development of novel countermeasures. However, the isolation of Plasmodium oocysts is challenging as these are formed between midgut epithelial cells and basal lamina after gametocytes enter the mosquito's body through blood feeding. Further research on oocysts has been impeded by issues related to oocyst isolation. Therefore, in this study, we injected Plasmodium into mosquitoes--an artificial and unique method--and aimed to clarify how oocysts were formed in mosquitoes after Plasmodium injection and whether free oocysts were formed from the mosquito tissue. Plasmodium berghei (ANKA strain) ookinetes cultured in vitro were injected into the thoracic body cavity (hemocoel) of female and male Anopheles stephensi mosquitoes. Oocysts were formed in the body of female and male mosquitoes at 14 days post injection. In addition, oocysts formed as a result of injection developed into sporozoites, which were infectious to mice. These findings suggest that P. berghei can complete its developmental stage in mosquitoes by injection. Some of the oocysts formed were free from mosquito tissue, and it was possible to collect oocysts with minimal contamination of mosquito tissue. These free oocysts can be used for investigating oocyst proteins and metabolism. [ABSTRACT FROM AUTHOR]