1. Investigation of laboratory methods for characterization of aquatic viruses in fish infected experimentally with infectious salmon anemia virus.
- Author
-
Eckstrand CD, Torrevillas BK, Wolking RM, Bradway DS, Warg JV, Clayton RD, Williams LB, Pessier AP, Reno JL, McMenamin-Snekvik KM, Thompson J, Baszler T, and Snekvik KR
- Subjects
- Animals, Real-Time Polymerase Chain Reaction veterinary, In Situ Hybridization veterinary, Whole Genome Sequencing, Microscopy, Electron veterinary, Aquaculture, Isavirus isolation & purification, Fish Diseases virology, Fish Diseases diagnosis, Salmo salar virology, Orthomyxoviridae Infections veterinary, Orthomyxoviridae Infections virology, Orthomyxoviridae Infections diagnosis
- Abstract
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon ( Salmo salar ). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation., Competing Interests: Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF