1. Vertical Temperature Structure Associated with Evaporation of Stratiform Precipitation in Idealized WRF Simulations
- Author
-
Heikki Järvinen, Meri Virman, Jouni Räisänen, Marja Bister, Victoria A. Sinclair, INAR Physics, and Institute for Atmospheric and Earth System Research (INAR)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Evaporation ,Magnitude (mathematics) ,Precipitation ,010502 geochemistry & geophysics ,Atmospheric sciences ,114 Physical sciences ,01 natural sciences ,Troposphere ,Cloud parameterizations ,MESOSCALE CONVECTIVE SYSTEMS ,PART II ,SCALE ,0105 earth and related environmental sciences ,TROPICAL CONVECTION ,MOIST CONVECTION ,Microphysics ,Tropics ,Humidity ,COLUMN WATER-VAPOR ,GRAVITY-WAVES ,13. Climate action ,Weather Research and Forecasting Model ,MICROPHYSICS ,Moist convection ,DEEP CONVECTION ,INTRASEASONAL VARIABILITY ,Geology - Abstract
A recent study based on observations has shown that after precipitation over tropical oceans rather shallow temperature structures occur in the lower troposphere and that their magnitude depends on climatological low- to midtropospheric humidity. As any process that produces temperature perturbations in the lower troposphere can be of great significance for the formation of atmospheric deep convection, the vertical temperature structure associated with evaporation of stratiform precipitation and its sensitivity to low- to midtropospheric humidity are studied by conducting three-dimensional, high-resolution, idealized simulations with the Advanced Research version of the Weather Research and Forecasting (WRF) Model. In the simulations, rainwater with mixing ratio and number concentration characteristic of stratiform precipitation associated with mesoscale convective systems is added in a large round area at roughly 560 hPa. Evaporative cooling and subsidence warming below result in a cold anomaly at roughly 560–750 hPa and, especially, a warm anomaly at roughly 750–900 hPa. The cold-over-warm anomalies are stronger with smaller low- to midtropospheric relative humidity in the initial conditions, with the maximum magnitude of the warm anomaly ranging between 0.7 and 1.2 K. The temperature anomalies propagate to the environment and still remain present after precipitation stops. The results show that evaporation of stratiform precipitation alone can lead to temperature structures, which are on the same order of magnitude as the observed ones, that potentially inhibit subsequent convection by increasing convective inhibition. Therefore, the representation of microphysical processes affecting the location, amount, and vertical and horizontal distribution of stratiform precipitation and its evaporation in numerical models requires special attention. A recent study based on observations has shown that after precipitation over tropical oceans rather shallow temperature structures occur in the lower troposphere and that their magnitude depends on climatological low- to midtropospheric humidity. As any process that produces temperature perturbations in the lower troposphere can be of great significance for the formation of atmospheric deep convection, the vertical temperature structure associated with evaporation of stratiform precipitation and its sensitivity to low- to midtropospheric humidity are studied by conducting three-dimensional, high-resolution, idealized simulations with the Advanced Research version of the Weather Research and Forecasting (WRF) Model. In the simulations, rainwater with mixing ratio and number concentration characteristic of stratiform precipitation associated with mesoscale convective systems is added in a large round area at roughly 560 hPa. Evaporative cooling and subsidence warming below result in a cold anomaly at roughly 560–750 hPa and, especially, a warm anomaly at roughly 750–900 hPa. The cold-over-warm anomalies are stronger with smaller low- to midtropospheric relative humidity in the initial conditions, with the maximum magnitude of the warm anomaly ranging between 0.7 and 1.2 K. The temperature anomalies propagate to the environment and still remain present after precipitation stops. The results show that evaporation of stratiform precipitation alone can lead to temperature structures, which are on the same order of magnitude as the observed ones, that potentially inhibit subsequent convection by increasing convective inhibition. Therefore, the representation of microphysical processes affecting the location, amount, and vertical and horizontal distribution of stratiform precipitation and its evaporation in numerical models requires special attention.
- Published
- 2020