1. The metabolicity index of involutions in characteristic two
- Author
-
A.-H. Nokhodkar
- Subjects
Involution (mathematics) ,Pure mathematics ,Algebra and Number Theory ,Conjecture ,Degree (graph theory) ,010102 general mathematics ,Separable extension ,Power of two ,01 natural sciences ,Separable space ,Ground field ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Central simple algebra ,Mathematics - Abstract
We define the notion of metabolicity index of involutions of the first kind in characteristic two. It is shown that this index is preserved over odd degree extensions of the base field. Also, its behavior over finite separable extensions is studied. As an application, it is shown that an orthogonal involution on a central simple algebra of degree a power of two which is either anisotropic or metabolic is totally decomposable if it is totally decomposable over some separable extension of the ground field. This result is then used to strengthen an earlier result of the author which proves a characteristic two counterpart of a conjecture concerning Pfister involutions formulated by Bayer-Fluckiger et al.
- Published
- 2021