1. Fuzzy self-tuning PID control of MC3 LLC resonant LED drivers.
- Author
-
Li, Delong, Lu, Yimin, and Ge, Xin
- Subjects
- *
ADAPTIVE control systems , *SELF-tuning controllers , *CURRENT fluctuations , *DC transformers , *PID controllers , *ELECTRIC power - Abstract
An MC3 LLC resonant light-emitting diode (LED) driver is a multi-channel constant current (MC3) output solution based on LLC resonance. Through an effective combination of multiple transformers and a DC block capacitor, this driver allows constant current outputs in multiple channels when the LED channels are unbalanced. This study considers a fuzzy self-tuning proportional integral derivative (PID) control strategy that allows for the self-tuning of PID parameters according to fuzzy inference rules designed using the relationship between the current gain and the switching frequency. Thus, when LED channels are unbalanced, the system allows a constant current output for each of the channels and controls the input voltage disturbances well. Simulation and experimental verifications are carried out, and a 20 W 4-channel constant current power supply design based on LLC resonance is obtained for the LED driver. This realizes soft-switching of the switching device, which reduces system loss and improves system efficiency. Moreover, the adjustment time of the proposed method is half that of fixed-parameter control methods, and the overshoot of the proposed method is smaller than that of fixed-parameter control methods. When compared with PID controllers with fixed parameters, the proposed method is more robust. When a system is disturbed, it recovers faster and has a smaller range of current fluctuation with the proposed method. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF