11 results on '"Dubnikova F"'
Search Results
2. Production of Aliphatic and Aromatic Compounds in the High Temperature Decomposition of Propargyl Chloride. Single Pulse Shock Tube Experiments, Quantum Chemical Calculations, and Computer Modeling.
- Author
-
Dubnikova F, Tamburu C, and Lifshitz A
- Abstract
The thermal reactions of propargyl chloride were studied behind reflected shock waves in a pressurized driver 2 in. i.d. single-pulse shock tube over the temperature range 1000-1350 K and pressure range behind the reflected shocks of 2-4 atm. Cooling rates were ∼5 × 10
5 K/s. The reflected shock temperatures were calculated from the extent of elimination of hydrofluoric acid (HF) from 1,1,1-trifluoroethane, where 1,1,1-trifluoroethane (TFE) → HF + 1,1-difluoroethylene (DFE), that was added in small concentration (0.1%) to the reaction mixture to serve as a chemical thermometer. For comparison, the shock temperatures were obtained also from the measured incident shock velocities, using the three conservation equations and the ideal gas equation of states. Fifteen stable reaction products, containing different numbers of carbon atoms (from two to nine), both aliphatic and aromatic, chain and cyclic, with and without chlorine resulting from the initial rupture of the C-Cl bond in propargyl chloride were identified. On the basis of the results of quantum chemical calculations that were carried out, a chemical kinetic scheme containing 63 elementary steps was constructed. Comparison of the curves that were calculated by using the kinetic scheme with the experimental results shows good agreement.- Published
- 2019
- Full Text
- View/download PDF
3. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.
- Author
-
Dubnikova F, Tamburu C, and Lifshitz A
- Abstract
The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.
- Published
- 2016
- Full Text
- View/download PDF
4. Structure, Energies, and Vibrational Frequencies of Solvated Li(+) in Ionic Liquids: Role of Cation Type.
- Author
-
Dubnikova F and Zeiri Y
- Abstract
This study examines the structure of five ionic liquids all of them containing bis[(trifluoromethyl)sulfonyl]imide (TFSI) as the anion with five different cations: Dimethylammonium, N-propylammonium, N-methyl-1-propylpiperidinium, N-methyl-3-methylpyridinium, and N-methylpyrrolidinium. This study is based on quantum chemical calculations of structure, energetics, and vibrational spectroscopy associated with solutions of Li(+) in the five ionic liquids examined. We have shown that the Li-TFSI ion-pair stabilization is 2.5-4 fold larger than those of the ion pairs of five cations with TFSI. A large number of different species containing LikTFSInCtm (Ct represent one of five cations studied, k, n, m = 0-2) were examined in detail. The results suggest that Li-(TFSI)2 is a highly stable species and may be responsible for the transport of Li ions in these ionic liquids. The vibrational analysis suggests that the high stability of the Li-TFSI ion pair is mainly due to Coulomb interaction between the Li ion and two oxygen atoms bound to the two sulfur atoms in the TFSI anion. This O-Li-O bond exhibits stretching and bending modes that may allow monitoring of these ion pairs.
- Published
- 2016
- Full Text
- View/download PDF
5. Blue-violet photoluminescence of 4-isopropyl-pyridine hydroxide crystals.
- Author
-
Vaganova E, Wachtel E, Leitus G, Danovich D, Popov I, Dubnikova F, and Yitzchaik S
- Abstract
There is continuing interest in determining essential structural features of polymer gels, which display photoelectric and/or thermoelectric behavior. One such gel is the blend, poly(4-vinylpyridine-co-butyl methacrylate)/poly(4-vinylpyridine), dissolved in liquid pyridine. Following extended aeration of a three-component mixture, which serves as a model for the gel side chain interactions, crystallization of a new molecule, 4-isopropylpyridine hydroxide (IPPOH), occurs. X-ray diffraction, DFT modeling, and spectroscopy were used to determine the structural, electronic, and luminescent properties of the crystal. The crystal structure reveals molecules forming head-to-tail, hydrogen-bonded chains without base stacking or marked interchain interaction. The molecular chains are characterized by moderately long-lived, blue-violet luminescence excited in the near-UV. Because these photoluminescent properties resemble those of the gel from which the crystals are derived, we may posit similar structural features in the gel for which direct structural analysis is not available.
- Published
- 2014
- Full Text
- View/download PDF
6. Role of metal ions in the destruction of TATP: theoretical considerations.
- Author
-
Dubnikova F, Kosloff R, Oxley JC, Smith JL, and Zeiri Y
- Subjects
- Ions chemistry, Models, Molecular, Molecular Structure, Quantum Theory, Heterocyclic Compounds, 1-Ring chemistry, Metals, Heavy chemistry, Peroxides chemistry
- Abstract
The safe decomposition of solid TATP (triacetone triperoxide) explosive is examined theoretically. The route to destruction starts with formation of metal complexes between a metal ion and the TATP molecule. The second step is decomposition of the molecules into stable final products. We examined the structure and stability of both metal ion (including Na(+), Cu(+), Cu(2+), Co(2+), and Zn(2+)) and proton complexes with TATP using quantum chemical calculations at the DFT-PBE0 level of theory. In addition, for each ion complex, we determined the initial steps in the pathway to decomposition together with the associated transition states. We find that the products of decomposition, in particular, acetone, are also stabilized by ion metal complexes. In agreement with experiment, we find the best candidates for metal ion induced decomposition are Cu(2+) and Zn(2+).
- Published
- 2011
- Full Text
- View/download PDF
7. Reactions of 1-naphthyl radicals with acetylene. Single-pulse shock tube experiments and quantum chemical calculations. Differences and similarities in the reaction with ethylene.
- Author
-
Lifshitz A, Tamburu C, and Dubnikova F
- Abstract
The reactions of 1-naphthyl radicals with acetylene were studied behind reflected shock waves in a single-pulse shock tube, covering the temperature range 950-1200 K at overall densities behind the reflected shocks of approximately 2.5 x 10(-5) mol/cm3. 1-Iodonaphthalene served as the source for 1-naphthyl radicals. The [acetylene]/[1-iodonaphthalene] ratio in all of the experiments was approximately 100 to channel the free radicals into reactions with acetylene rather than iodonaphthalene. Only two major products resulting from the reactions of 1-naphthyl radicals with acetylene and with hydrogen atoms were found in the post shock samples. They were acenaphthylene and naphthalene. Some low molecular weight aliphatic products at rather low concentrations, resulting from an attack of various free radicals on acetylene, were also found in the shocked samples. In view of the relatively low temperatures employed in the present experiments, the unimolecular decomposition rate of acetylene is negligible. One potential energy surface describes the production of acenaphthylene and 1-naphthyl acetylene, although the latter was not found experimentally due to the high barrier (calculated) required for its production. Using quantum chemical methods, the rate constants for three unimolecular elementary steps on the surface were calculated using transition state theory. A kinetics scheme containing 16 elementary steps was constructed, and computer modeling was performed. An excellent agreement between the experimental yields of the two major products and the calculated yields was obtained. Differences and similarities in the potential energy surfaces of 1-naphthyl radical + acetylene and those of ethylene are presented, and the kinetics mechanisms are discussed.
- Published
- 2009
- Full Text
- View/download PDF
8. Reactions of 1-naphthyl radicals with ethylene. Single pulse shock tube experiments, quantum chemical, transition state theory, and multiwell calculations.
- Author
-
Lifshitz A, Tamburu C, and Dubnikova F
- Abstract
The reactions of 1-naphthyl radicals with ethylene were studied behind reflected shock waves in a single pulse shock tube, covering the temperature range 950-1200 K at overall densities behind the reflected shocks of approximately 2.5 x 10(-5) mol/cm3. 1-Iodonaphthalene served as the source for 1-naphthyl radicals as its C-I bond dissociation energy is relatively small. It is only approximately 65 kcal/mol as compared to the C-H bond strength in naphthalene which is approximately 112 kcal/mol and can thus produce naphthyl radicals at rather low reflected shock temperatures. The [ethylene]/[1-iodo-naphthalene] ratio in all of the experiments was approximately 100 in order to channel the free radicals into reactions with ethylene rather than iodonaphthalene. Four products resulting from the reactions of 1-naphthyl radicals with ethylene were found in the post shock samples. They were vinyl naphthalene, acenaphthene, acenaphthylene, and naphthalene. Some low molecular weight aliphatic products at rather low concentrations, resulting from the attack of various free radicals on ethylene were also found in the shocked samples. In view of the relatively low temperatures employed in the present experiments, the unimolecular decomposition rate of ethylene is negligible. Three potential energy surfaces describing the production of vinyl naphthalene, acenaphthene, and acenaphthylene were calculated using quantum chemical methods and rate constants for the elementary steps on the surfaces were calculated using transition state theory. Naphthalene is not part of the reactions on the surfaces. Acenaphthylene is obtained only from acenaphthene. A kinetics scheme containing 27 elementary steps most of which were obtained from the potential energy surfaces was constructed and computer modeling was performed. An excellent agreement between the experimental yields of the four major products and the calculated yields was obtained.
- Published
- 2008
- Full Text
- View/download PDF
9. Decomposition and isomerization of 1,2-benzisoxazole: single-pulse shock-tube experiments, quantum chemical and transition-state theory calculations.
- Author
-
Lifshitz A, Tamburu C, Suslensky A, and Dubnikova F
- Abstract
Isomerization and decomposition of 1,2-benzisoxazole were studied behind reflected shock waves in a pressurized driver, single-pulse shock tube. It isomerizes to o-hydroxybenzonitrile, and no fragmentation is observed up to a temperature where the isomerization is almost complete (approximately 1040 K at 2 ms reaction time). The isomerization experiments in this investigation covered the temperature range 900-1040 K. The lack of fragmentation is in complete contrast to the thermal behavior of isoxazole, where no isomerization was observed and the main decomposition products over the same temperature range were carbon monoxide and acetonitrile. In a series of experiments covering the temperature range 1190-1350 K, a plethora of fragmentation products appear in the post shock samples of 1,2-benzisoxazole. The product distribution is exactly the same regardless of whether the starting material is 1,2-benzisoxazole or o-hydroxybenzonitrile, indicating that over this temperature range the 1,2-benzisoxazole has completely isomerized to o-hydroxybenzonitrile prior to fragmentation. Two potential energy surfaces that lead to the isomerization were evaluated by quantum chemical calculations. One surface with one intermediate and two transition states has a high barrier and does not contribute to the process. The second surface is more complex. It has three intermediates and four transition states, but it has a lower overall barrier and yields the isomerization product o-hydroxybenzonitrile at a much higher rate. The unimolecular isomerization rate constants kinfinity at a number of temperatures in the range of 900-1040 K were calculated from the potential energy surface using transition-state theory and then expressed in an Arrhenius form. The value obtained is kfirst=4.15x10(14) exp(-51.7x10(3)/RT) s-1, where R is expressed in units of cal/(K mol). The calculated value is somewhat higher than the one obtained from the experimental results. When it is expressed in terms of energy difference it corresponds of ca. 2 kcal/mol.
- Published
- 2006
- Full Text
- View/download PDF
10. Decomposition of anthranil. Single pulse shock-tube experiments, potential energy surfaces and multiwell transition-state calculations. The role of intersystem crossing.
- Author
-
Lifshitz A, Tamburu C, Suslensky A, and Dubnikova F
- Abstract
The thermal decomposition of anthranil diluted in argon was studied behind reflected shock waves in a 2 in. i.d. pressurized driver single-pulse shock tube over the temperature range 825-1000 K and overall densities of approximately 3 x 10(-5) mol/cm(3). Two major products: aniline and cyclopentadiene carbonitrile (accompanied by carbon monoxide) and four minor products resulting from the decomposition were found in the postshock samples. They were, in order of decreasing abundance, pyridine, CH(2)=CHCN, HCN and CHC-CN, and comprised only a few percents of the overall product distribution. Quantum chemical calculations were carried out to determine the sequence of the unimolecular reactions that lead to the formation of cyclopentadiene carbonitrile and of phenylnitrene/phenylimine that are the precursors of aniline. They form aniline by reactions with traces of water impurities. To produce cyclopentadiene carbonitrile, two main processes must take place: CO elimination and ring contraction from a six- to a five-membered ring. It was shown that this can occur via two parallel pathways where CO elimination takes place prior to or following ring contraction. Singlet potential energy surfaces for all the elementary reactions that lead to the formation of cyclopentadiene carbonitrile and phenylnitrene/phenylimine were obtained. Their rate constants were calculated on the basis of the results of the quantum chemical calculations using transition-state theory. A kinetic scheme containing these reactions was constructed and multiwell calculations were performed to evaluate the mole percent of the products as a function of temperature. A very serious disagreement between the experimental results and the results of calculations showed that the singlet PESs could not account for the observed experimental rates. No other singlet PESs that lead to the formation of these products could be found. In view of this observation, attempts to find pathways that lead to the formation of cyclopentadiene carbonitrile and phenylnitrene/phenylimine on triplet surfaces were made. Such surfaces were found, and singlet <--> triplet intersystem crossing probabilities and crossing rate constants were calculated as well as the rate constants of all the elementary steps on the triplet surfaces. A reaction scheme was constructed and multiwell calculations were performed, including also the pathways on the singlet surfaces, to evaluate the mole percent of the products as a function of temperature. The agreement between the experimental results and these calculations was quite satisfactory.
- Published
- 2006
- Full Text
- View/download PDF
11. Thermal reactions of benzoxazole. Single pulse shock tube experiments and quantum chemical calculations.
- Author
-
Lifshitz A, Tamburu C, Suslensky A, and Dubnikova F
- Abstract
The thermal decomposition of benzoxazole diluted in argon was studied behind reflected shock waves in a 2 in. i.d. single-pulse shock tube over the temperature range 1000-1350 K and at overall densities of approximately 3 x 10(-5) mol/cm(3). Two major products, o-hydroxybenzonitrile at high concentration and cyclopentadiene carbonitrile (accompanied by carbon monoxide) at much lower concentration, and four minor fragmentation products resulting from the decomposition were found in the postshock samples. They were, in order of decreasing abundance, benzonitrile, acetylene, HCN, and CH=C-CN and comprised of only a few percent of the overall product distribution. Quantum chemical calculations were carried out to determine the sequence of the unimolecular reactions that led to the formation of o-hydroxybenzonitrile and cyclopentadiene carbonitrile, the major products of the thermal reactions of benzoxazole. A potential energy surface leading directly from benzoxazole to cyclopentadiene carbonitrile could not be found, and it was shown that the latter is formed from the product o-hydroxybenzonitrile. In order that cyclopentadiene carbonitrile be produced, CO elimination and ring contraction from a six- to a five-membered ring must take place. A surface where CO elimination occurs prior to ring contraction was found to have very high barriers compared to the ones where ring contraction occurs prior to CO elimination and was not considered in our discussion. Rates for all the steps on the various surfaces were evaluated, kinetic schemes containing these steps were constructed, and multiwell calculations were performed to evaluate the mole percent of the two major products as a function of temperature. The agreement between the experimental results and these calculations, as shown graphically, is very good.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.