1. A simplified guide for charged aerosol detection of non-chromophoric compounds-Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin.
- Author
-
Soliven A, Haidar Ahmad IA, Tam J, Kadrichu N, Challoner P, Markovich R, and Blasko A
- Subjects
- Aerosols, Chromatography, High Pressure Liquid, Particle Size, Signal-To-Noise Ratio, Amikacin analysis
- Abstract
Amikacin, an aminoglycoside antibiotic lacking a UV chromophore, was developed into a drug product for delivery by inhalation. A robust method for amikacin assay analysis and aerosol particle size distribution (aPSD) determination, with comparable performance to the conventional UV detector was developed using a charged aerosol detector (CAD). The CAD approach involved more parameters for optimization than UV detection due to its sensitivity to trace impurities, non-linear response and narrow dynamic range of signal versus concentration. Through careful selection of the power transformation function value and evaporation temperature, a wider linear dynamic range, improved signal-to-noise ratio and high repeatability were obtained. The influences of mobile phase grade and glassware binding of amikacin during sample preparation were addressed. A weighed (1/X
2 ) least square regression was used for the calibration curve. The limit of quantitation (LOQ) and limit of detection (LOD) for this method were determined to be 5μg/mL and 2μg/mL, respectively. The method was validated over a concentration range of 0.05-2mg/mL. The correlation coefficient for the peak area versus concentration was 1.00 and the y-intercept was 0.2%. The recovery accuracies of triplicate preparations at 0.05, 1.0, and 2.0mg/mL were in the range of 100-101%. The relative standard deviation (Srel ) of six replicates at 1.0mg/mL was 1%, and Srel of five injections at the limit of quantitation was 4%. A robust HPLC-CAD method was developed and validated for the determination of the aPSD for amikacin. The CAD method development produced a simplified procedure with minimal variability in results during: routine operation, transfer from one instrument to another, and between different analysts., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF