1. Comparative Study of Structural, Morphological, Magneto-Optical and Photo-Catalytic Properties of Magnetically Reusable Spinel MnFe₂O₄ Nano-Catalysts.
- Author
-
Silambarasu A, Manikandan A, Balakrishnan K, Jaganathan SK, Manikandan E, and Aanand JS
- Subjects
- Magnetics, Optics and Photonics, Spectroscopy, Fourier Transform Infrared, Aluminum Oxide chemistry, Ferric Compounds chemistry, Magnesium Oxide chemistry, Manganese Compounds chemistry, Nanostructures chemistry
- Abstract
Spinel MnFe2O4 nanostructures were synthesized by simple, economical and eco-friendly microwave combustion (MCM) and conventional combustion (CCM) methods using metal nitrates and glycine used as the fuel, instead of toxic inorganic/organic catalyst, template and surfactant. Powder XRD and FT-IR, EDX and SAED results were confirmed the products have a cubic phase spinel structure. EDX and SAED results confirmed purity and high crystallinity without any other secondary phase impurities. HR-SEM and HR-TEM analysis indicate that the MCM and CCM products consist of nano- and microstructures, respectively. The optical band gap (Eg) was measured using Kubelka-Munk model and it shows higher value (2.37 eV) for MnFe2O4-MCM than MnFe2O4-CCM (2.15 eV), due to the smaller particle size of MnFe2O4-MCM. VSM results showed a superparamagnetic behavior and the magnetization (Ms) value of MnFe2O4-MCM is higher i.e., 39.68 emu/g than MnFe2O4-CCM (33.59 emu/g). It was found that the sample MnFe2O4-MCM have higher surface area than MnFe2O4-CCM, which in turn leads to the improved performance towards the photocatalytic degradation (PCD) of methylene blue (MB) and it was found that the sample MnFe2O4-MCM show higher PCD efficiency (96.48%) than MnFe2O4-CCM (84.95%). Also, MnFe2O4 show higher activity with good reusability, and eco-friendly materials for industrial and technological applications.
- Published
- 2018
- Full Text
- View/download PDF