1. Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli
- Author
-
Rajendran Harinarayanan and J. Gowrishankar
- Subjects
DNA Replication ,Transcription, Genetic ,Mutant ,Ribonuclease H ,Biology ,Chromosomes ,Plasmid ,Bacterial Proteins ,Structural Biology ,Transcription (biology) ,Escherichia coli ,Nucleoid ,Molecular Biology ,Transcription factor ,Gene ,Escherichia coli Proteins ,DNA replication ,Rho factor ,Peptide Elongation Factors ,Molecular biology ,Rho Factor ,Mutation ,biology.protein ,Nucleic Acid Conformation ,Plasmids ,Transcription Factors - Abstract
Two Escherichia coli genes, rnhA and recG, encode products that disrupt R-loops by hydrolysis and unwinding, respectively. It is known that the propensity for R-loop formation in vivo is increased during growth at 21 degrees C. We have identified several links between rnhA, recG, and R-loop-dependent plasmid replication on the one hand, and genes rho and nusG involved in factor-dependent transcription termination on the other. A novel nusG-G146D mutation phenocopied a rho-A243E mutation in conferring global deficiency in transcription termination, and both mutants were killed at 21 degrees C following overexpression of rnhA(+). Mutant combinations rnhA-nusG or recG-rho were synthetically lethal at 21 degrees C, with the former being suppressed by recG(+) overexpression. rho and nusG mutants were killed following transformation with plasmids such as pACYC184 or pUC19 (which have R-loop replication intermediates) even at 30 degrees C or 37 degrees C, and the lethality was correlated with greatly increased content of supercoiled monomer species of these and other co-resident R-loop-dependent plasmids. Plasmid-mediated lethality in the mutants was suppressed by overexpression of rnhA(+) or recG(+). Two additional categories of trans-acting suppressors of the plasmid-mediated lethality were identified whose primary effects were, respectively, a reduction in plasmid copy number even in the wild-type strain, and a restoration of the proficiency of in vivo transcription termination in the nusG and rho mutant strains. The former category of suppressors included rom(+), and mutations in rpoB(Q513L), pcnB, and polA, whereas the latter included a mutation in rho (R221C) and several non-null mutations (E74K, L26P, and delta64-137) in the gene encoding the nucleoid protein H-NS. We propose that an increased occurrence of chromosomal R-loops in the rho and nusG mutants leads to titration of a cyloplasmic host factor(s) that negatively modulates the stability of plasmid R-loop replication intermediates and consequently to runaway plasmid replication.
- Published
- 2003