1. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)-A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer's Disease.
- Author
-
Scott JD, Li SW, Brunskill AP, Chen X, Cox K, Cumming JN, Forman M, Gilbert EJ, Hodgson RA, Hyde LA, Jiang Q, Iserloh U, Kazakevich I, Kuvelkar R, Mei H, Meredith J, Misiaszek J, Orth P, Rossiter LM, Slater M, Stone J, Strickland CO, Voigt JH, Wang G, Wang H, Wu Y, Greenlee WJ, Parker EM, Kennedy ME, and Stamford AW
- Subjects
- Alzheimer Disease metabolism, Amyloid beta-Protein Precursor metabolism, Animals, Cyclic S-Oxides chemical synthesis, Cyclic S-Oxides chemistry, Dogs, Dose-Response Relationship, Drug, Humans, Macaca fascicularis, Models, Molecular, Molecular Structure, Rats, Rats, Sprague-Dawley, Structure-Activity Relationship, Thiadiazines chemical synthesis, Thiadiazines chemistry, Alzheimer Disease drug therapy, Amyloid beta-Protein Precursor antagonists & inhibitors, Cyclic S-Oxides pharmacology, Drug Discovery, Thiadiazines pharmacology
- Abstract
Verubecestat 3 (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer's disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of 3, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization.
- Published
- 2016
- Full Text
- View/download PDF