1. A Second-Generation Oral SARS-CoV-2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19.
- Author
-
Allerton CMN, Arcari JT, Aschenbrenner LM, Avery M, Bechle BM, Behzadi MA, Boras B, Buzon LM, Cardin RD, Catlin NR, Carlo AA, Coffman KJ, Dantonio A, Di L, Eng H, Farley KA, Ferre RA, Gernhardt SS, Gibson SA, Greasley SE, Greenfield SR, Hurst BL, Kalgutkar AS, Kimoto E, Lanyon LF, Lovett GH, Lian Y, Liu W, Martínez Alsina LA, Noell S, Obach RS, Owen DR, Patel NC, Rai DK, Reese MR, Rothan HA, Sakata S, Sammons MF, Sathish JG, Sharma R, Steppan CM, Tuttle JB, Verhoest PR, Wei L, Yang Q, Yurgelonis I, and Zhu Y
- Subjects
- Humans, Animals, Mice, Administration, Oral, Coronavirus 3C Proteases antagonists & inhibitors, Coronavirus 3C Proteases metabolism, Rats, COVID-19 virology, COVID-19 Drug Treatment, SARS-CoV-2 drug effects, Antiviral Agents pharmacology, Antiviral Agents pharmacokinetics, Antiviral Agents therapeutic use, Antiviral Agents chemistry, Protease Inhibitors pharmacology, Protease Inhibitors pharmacokinetics, Protease Inhibitors therapeutic use, Protease Inhibitors chemistry
- Abstract
Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.
- Published
- 2024
- Full Text
- View/download PDF