1. Configuration of the 5'-methyl group modulates the biophysical and biological properties of locked nucleic acid (LNA) oligonucleotides.
- Author
-
Seth PP, Allerson CR, Siwkowski A, Vasquez G, Berdeja A, Migawa MT, Gaus H, Prakash TP, Bhat B, and Swayze EE
- Subjects
- Biophysics, Nuclear Magnetic Resonance, Biomolecular, Oligonucleotides chemistry, Structure-Activity Relationship, Oligonucleotides pharmacology
- Abstract
As part of a program aimed at exploring the structure- activity relationships of 2',4'-bridged nucleic acid (BNA) containing antisense oligonucleotides (ASOs), we report the synthesis and biophysical and biological properties of R- and S-5'-Me LNA modified oligonucleotides. We show that introduction of a methyl group in the (S) configuration at the 5'-position is compatible with the high affinity recognition of complementary nucleic acids observed with LNA. In contrast, introduction of a methyl group in the (R) configuration reversed the stabilization effect of LNA. NMR studies indicated that the R-5'-Me group changes the orientation around torsion angle γ from the +sc to the ap range at the nucleoside level, and this may in part be responsible for the poor hybridization behavior exhibited by this modification. In animal experiments, S-5'-Me-LNA modified gapmer antisense olignucleotides showed slightly reduced potency relative to the sequence matched LNA ASOs while improving the therapeutic profile.
- Published
- 2010
- Full Text
- View/download PDF