1. MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.
- Author
-
Gordon-Wylie SW, Solamen LM, McGarry MDJ, Zeng W, VanHouten E, Gilbert G, Weaver JB, and Paulsen KD
- Subjects
- Algorithms, Benchmarking, Brain diagnostic imaging, Gelatin, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted methods, Manganese chemistry, Motion, Signal-To-Noise Ratio, Elasticity Imaging Techniques methods, Imaging, Three-Dimensional methods, Magnetic Resonance Imaging methods, Phantoms, Imaging
- Abstract
Magnetic Resonance Elastography (MRE) detects induced periodic motions in biological tissues allowing maps of tissue mechanical properties to be derived. In-vivo MRE is commonly performed at frequencies of 30-100 Hz using external actuation, however, using cerebro-vascular pulsation at 1 Hz as a form of intrinsic actuation (IA-MRE) eliminates the need for external motion sources and simplifies data acquisition. In this study a hydraulic actuation system was developed to drive 1 Hz motions in gelatin as a tool for investigating the performance limits of IA-MRE image reconstruction under controlled conditions. Quantitative flow (QFLOW) MR techniques were used to phase encode 1 Hz motions as a function of gradient direction using 3D or 4D acquisition; 4D acquisition was twice as fast and yielded comparable motion field and concomitant image reconstruction results provided the motion signal was sufficiently strong. Per voxel motion noise floor corresponded to a displacement amplitude of about 20-30 μm. Signal to noise ratio (SNR) was 94 ± 17 for 3D and dropped to 69 ± 10 for the faster 4D acquisition, but yielded octahedral shear stress and shear modulus maps of high quality that differed by only about 20% on average. QFLOW measurements in gel phantoms were improved significantly by adding Mn(II) to mimic relaxation rates found in brain. Overall, the hydraulic 1 Hz actuation system when coupled with 4D sequence acquisition produced a fast reliable approach for future IA-MRE phantom evaluation and contrast detail studies needed to benchmark imaging performance., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF