1. Data-driven self-calibration and reconstruction for non-cartesian wave-encoded single-shot fast spin echo using deep learning.
- Author
-
Chen F, Cheng JY, Taviani V, Sheth VR, Brunsing RL, Pauly JM, and Vasanawala SS
- Subjects
- Adult, Aged, Artifacts, Calibration, Female, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Prospective Studies, Young Adult, Deep Learning, Magnetic Resonance Imaging
- Abstract
Background: Current self-calibration and reconstruction methods for wave-encoded single-shot fast spin echo imaging (SSFSE) requires long computational time, especially when high accuracy is needed., Purpose: To develop and investigate the clinical feasibility of data-driven self-calibration and reconstruction of wave-encoded SSFSE imaging for computation time reduction and quality improvement., Study Type: Prospective controlled clinical trial., Subjects: With Institutional Review Board approval, the proposed method was assessed on 29 consecutive adult patients (18 males, 11 females, range, 24-77 years)., Field Strength/sequence: A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable 3.5× acceleration with full-Fourier acquisitions. Data-driven calibration of wave-encoding point-spread function (PSF) was developed using a trained deep neural network. Data-driven reconstruction was developed with another set of neural networks based on the calibrated wave-encoding PSF. Training of the calibration and reconstruction networks was performed on 15,783 2D wave-encoded SSFSE abdominal images., Assessment: Image quality of the proposed data-driven approach was compared independently and blindly with a conventional approach using iterative self-calibration and reconstruction with parallel imaging and compressed sensing by three radiologists on a scale from -2 to 2 for noise, contrast, sharpness, artifacts, and confidence. Computation time of these two approaches was also compared., Statistical Tests: Wilcoxon signed-rank tests were used to compare image quality and two-tailed t-tests were used to compare computation time with P values of under 0.05 considered statistically significant., Results: An average 2.1-fold speedup in computation was achieved using the proposed method. The proposed data-driven self-calibration and reconstruction approach significantly reduced the perceived noise level (mean scores 0.82, P < 0.0001)., Data Conclusion: The proposed data-driven calibration and reconstruction achieved twice faster computation with reduced perceived noise, providing a fast and robust self-calibration and reconstruction for clinical abdominal SSFSE imaging., Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:841-853., (© 2019 International Society for Magnetic Resonance in Medicine.)
- Published
- 2020
- Full Text
- View/download PDF