1. Determination of a transmembrane pH difference in chloroplasts with a spin label tempamine
- Author
-
Boris V. Trubitsin and Alexander N. Tikhonov
- Subjects
Nuclear and High Energy Physics ,Chloroplasts ,Light ,Biophysics ,Analytical chemistry ,chemistry.chemical_element ,Biochemistry ,Oxygen ,Models, Biological ,Thylakoids ,law.invention ,Membrane Potentials ,Cyclic N-Oxides ,law ,Computer Simulation ,Spin label ,Electrochemical gradient ,Electron paramagnetic resonance ,Hyperfine structure ,Cells, Cultured ,Chemistry ,Cell Membrane ,Electron Spin Resonance Spectroscopy ,Hydrogen-Ion Concentration ,Condensed Matter Physics ,Electron transport chain ,Vicia faba ,Chloroplast ,Plant Leaves ,Thylakoid ,Spin Labels ,Algorithms - Abstract
We present a method for measuring the transmembrane pH difference (deltapH=pHin-pHout) in chloroplasts with a spin label TEMPAMINE (4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl) accumulating inside the thylakoids in response to generation of deltapH. Experiments with chloroplasts suspended in the media of different osmolarity demonstrated that most of TEMPAMINE (TA) molecules taken up by chloroplasts were localized in the bulk of the thylakoid lumen. The DeltapH value was determined from the relationship deltapH=lg([H+]in/[H+]out) approximately equal to lg(Cin/Cout), where Cin and Cout are the concentrations of TA inside and outside the thylakoids, respectively. To quantify the internal concentration Cin, we used the threshold nature of the concentration-dependent broadening of the EPR signal from TA. It was demonstrated that spin-exchange interactions between TA molecules caused an observable broadening of the signal only when the concentration of TA exceeded the threshold level, [TA]theta approximately 2.0-2.2mM. The concentration dependencies of the signal parameters (the peak-to-peak amplitude, App, and the linewidth, deltaHpp) were described within a model of the non-homogeneous broadening of an unresolved hyperfine multiplet from the protons of TA molecule. If the concentration of TA inside the thylakoids went beyond the threshold level, the spin-exchange broadening of the EPR signal was accompanied by a reversible decrease in the signal height (parameter deltaA). By measuring the signal behavior at different levels of microwave power, we were able to discriminate between the line broadening effects caused by concentrating TA molecules inside the thylakoids or the light-induced changes in the concentration of oxygen. We developed a general algorithm for determination of the deltapH value and the internal volume of thylakoids, Vin, from the non-linear dependence of parameter deltaA on the concentration C0 of TA in a chloroplast suspension. Advantages of this method are: (i) it avoids the use of a broadening agent; (ii) it allows the internal volume of thylakoids to be evaluated; and (iii) the concentrations of TA used to measure the deltapH are below the range of concentrations that could cause the uncoupling electron transport to ATP synthesis in chloroplasts. Results of our measurements are consistent with the literature data on deltapH determinations by other methods.
- Published
- 2003