4 results on '"Tribble D"'
Search Results
2. Increased low density lipoprotein degradation in aorta of irradiated mice is inhibited by preenrichment of low density lipoprotein with alpha-tocopherol.
- Author
-
Tribble, D L, Krauss, R M, Chu, B M, Gong, E L, Kullgren, B R, Nagy, J O, and La Belle, M
- Abstract
We previously reported that upper thoracic exposure to ionizing radiation (IR) accelerates fatty streak formation in C57BL/6 mice and that such effects are inhibited by overexpression of the antioxidant enzyme CuZn-superoxide dismutase (SOD). Notably, IR-accelerated lesion formation is strictly dependent on a high fat diet (i.e., atherogenic lipoproteins) but does not involve alterations in circulating lipid or lipoprotein levels. We thus proposed that IR promotes changes in the artery wall that enhance the deposition of lipoprotein lipids. To address this hypothesis, we examined the effects of IR on aortic accumulation and degradation of low density lipoproteins (LDL). Ten-week-old C57BL/6 mice were exposed to a single (8-Gy) dose of (60)Co radiation to the upper thoracic area or were sham irradiated (controls) and were then placed on the high fat diet. Five days postexposure, the mice received either (125)I-labeled LDL ((125)I-LDL) (which was used to measure intact LDL) or (125)I-labeled tyramine cellobiose ((125)I-TC)-LDL (which was used to measure both intact and cell-degraded LDL) via tail vein injection. On the basis of trichloroacetic acid (TCA)-precipitable counts in retroorbital blood samples, > or =95% of donor LDL was cleared within 24 h and there were no differences in time-averaged plasma concentrations of the two forms of LDL among irradiated and control mice. Aortic values increased markedly within the first hour and thereafter exhibited a slow increase up to 24 h. There were no differences between irradiated and control mice at 1 h, when values primarily reflected LDL entry, but a divergence was observed thereafter. At 24 h, (125)I-TC-associated counts were 1.8-fold higher in irradiated mice (P = 0.10). In contrast, (125)I-LDL-associated counts were 30% lower in irradiated mice (P< 0.05), suggesting that most of the retained (125)I-TC was associated with LDL degradation products. Consistent with the proposed involvement of oxidative or redox-regulated events, IR-induced LDL degradation was lower in SOD-transgenic than wild-type mice (P<0.05). The importance of LDL oxidation was suggested by observations that IR-induced LDL degradation was significantly reduced by preenriching LDL with alpha-tocopherol. On the basis of these results, we propose that IR elicits SOD-inhibitable changes in the artery wall that enhance LDL oxidation and degradation leading to the deposition of LDL-borne lipids. These studies provide additional support for the role of oxidation in lipoprotein lipid deposition and atherogenesis and suggest that IR promotes an arterial environment that stimulates this process in vivo. more...
- Published
- 2000
Catalog
3. Changes in cholesterol absorption and cholesterol synthesis caused by ezetimibe and/or simvastatin in men.
- Author
-
Sudhop T, Reber M, Tribble D, Sapre A, Taggart W, Gibbons P, Musliner T, von Bergmann K, and Lütjohann D
- Subjects
- Adult, Anticholesteremic Agents therapeutic use, Double-Blind Method, Drug Combinations, Ezetimibe, Humans, Hypercholesterolemia drug therapy, Male, Middle Aged, Young Adult, Azetidines therapeutic use, Cholesterol metabolism, Simvastatin therapeutic use
- Abstract
This study evaluates changes in cholesterol balance in hypercholesterolemic subjects following treatment with an inhibitor of cholesterol absorption or cholesterol synthesis or coadministration of both agents. This was a randomized, double blind, placebo-controlled, four-period crossover study to evaluate the effects of coadministering 10 mg ezetimibe with 20 mg simvastatin (ezetimibe/simvastatin) on cholesterol absorption and synthesis relative to either drug alone or placebo in 41 subjects. Each treatment period lasted 7 weeks. Ezetimibe and ezetimibe/simvastatin decreased fractional cholesterol absorption by 65% and 59%, respectively (P < 0.001 for both relative to placebo). Simvastatin did not significantly affect cholesterol absorption. Ezetimibe and ezetimibe/simvastatin increased fecal sterol excretion (corrected for dietary cholesterol), which also represents net steady state cholesterol synthesis, by 109% and 79%, respectively (P < 0.001). Ezetimibe, simvastatin, and ezetimibe/simvastatin decreased plasma LDL-cholesterol by 20, 38, and 55%, respectively. The coadministered therapy was well tolerated. The decreases in net cholesterol synthesis and increased fecal sterol excretion yielded nearly additive reductions in LDL-cholesterol for the coadministration of ezetimibe and simvastatin. more...
- Published
- 2009
- Full Text
- View/download PDF
4. HDL antioxidant effects as assessed using a nonexchangeable probe to monitor particle-specific peroxidative stress in LDL-HDL mixtures.
- Author
-
Tribble DL, Chu BM, Gong EL, van Venrooij F, and Nichols AV
- Subjects
- Adult, Chromatography, Affinity methods, Copper pharmacology, Humans, Iron pharmacology, Lipoproteins, LDL blood, Molecular Probes, Ultracentrifugation, Lipid Peroxidation, Lipoproteins, HDL blood, Oxidative Stress
- Abstract
High density lipoproteins (HDL) have been reported to inhibit oxidation of low density lipoproteins (LDL) based in part on observations that oxidative changes occur more slowly in LDL-HDL mixtures than in LDL alone. In the current studies, we developed an approach to discern particle-specific oxidation kinetics within mixed particle systems using the oxidation-labile fluorescent probe parinaric acid cholesteryl ester (PnCE) and applied this to the study of HDL inhibition effects. PnCE was introduced into acceptor lipoproteins by cholesteryl ester transfer protein (CETP)-mediated transfer from donor microemulsions. Incubation of PnCE-containing LDL and HDL with non-probe-containing HDL and LDL, respectively, followed by measurement of reisolated fractions, indicated that PnCE does not transfer appreciably between lipoprotein fractions. Oxidative loss of lipoprotein-associated PnCE occurred essentially in tandem with changes in conjugated dienes, suggesting that PnCE loss reflects the course of peroxidation of endogenous lipoprotein lipids. Using PnCE to separately monitor LDL- and HDL-specific oxidation within LDL-HDL mixtures, we obtained direct evidence that HDL inhibits both Cu(2+)- and Fe(3+)-induced peroxidation of LDL-associated lipids. Notably, in the presence of Cu2+, loss of HDL-associated PnCE fluorescence also was inhibited in LDL-HDL co-incubations, suggesting that LDL exert an antioxidant effect under these conditions as well. Thus, results obtained using this new methodology are consistent with previously reported antioxidant effects of HDL, but indicate that the behavior of individual lipoprotein particles may be more complicated than can be predicted from the collective behavior of the lipoprotein mixture. more...
- Published
- 1995
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.