1. Nanofibers from hydroxypropyl β-cyclodextrin/pantothenic acid supramolecular complexes: Physicochemical characterization and potential biomedical applications
- Author
-
Sonaimuthu Mohandoss, Subramanian Palanisamy, SangGuan You, Manoharan Vinosha, Periyannan Rajasekar, Kuppu Sakthi Velu, Yong Rok Lee, and Narayanasamy Marimuthu Prabhu
- Subjects
Polymers and Plastics ,Materials Science (miscellaneous) ,Chemical Engineering (miscellaneous) ,Industrial and Manufacturing Engineering - Abstract
The electrospinning of nanofibers (NFs) from 2-hydroxypropyl β-cyclodextrin supramolecular inclusion complexes (150% HPβ-CD, w/v) with vitamin B5 (pantothenic acid [PA]) was achieved without using any carrier polymeric matrix. The presence of PA and the formation of the HPβ-CD/PA inclusion complex within the NFs structure were confirmed by SEM, FTIR, XRD, and TGA analysis. SEM images depicted the bead-free uniform NFs and confirmed the incorporation of HPβ-CD/PA NFs did not alter the fiber morphology having an average fiber diameter of 512 ± 24 nm, 328 ± 18 nm, and 150 ± 19 nm, respectively. Fourier transform infrared (FTIR) spectrum indicated inclusion complex from the shifting of the peaks of each component in HPβ-CD/PA NFs, whereas XRD pattern revealed that HPβ-CD/PA NFs was achieved due to the formation of a new amorphous structure. TGA studies showed that the stability of PA after HPβ-CD encapsulation was improved. Molecular docking was used to simulate the positions and interactions of the binding sites of the HPβ-CD/PA inclusion complex. The phase solubility test showed enhanced solubility of PA due to the inclusion complexation; in addition, the stoichiometry of HPβ-CD/PA was determined to be 1:1. The release of PA from HPβ-CD/PA NFs prevented the colonization of Escherichia coli (5.0 ± 0.3%) and Staphylococcus aureus (2.0 ± 0.5%) bacteria to a great extent, as observed in the antibacterial activity results. The cell viability of HCT-116 cells treated with 100 μg/mL of HPβ-CD/PA NFs was registered at 97.5 ± 2.1%. It was observed that HPβ-CD/PA NFs had higher anticancer activity compared to pure PA and HPβ-CD due to the solubility increase. In brief, our results suggested that polymer-free HPβ-CD/PA inclusion complex NFs could have potential applications in food, pharmaceuticals, and healthcare thanks to its efficient antibacterial and anticancer activities.
- Published
- 2022
- Full Text
- View/download PDF