1. Adenosine metabolism during phorbol myristate acetate-mediated induction of HL-60 cell differentiation: changes in expression pattern of adenosine kinase, adenosine deaminase, and 5'-nucleotidase.
- Author
-
Spychala J, Mitchell BS, and Barankiewicz J
- Subjects
- Adenine metabolism, B-Lymphocytes enzymology, Cell Differentiation drug effects, Extracellular Space, Gene Expression Regulation, Enzymologic, HL-60 Cells cytology, Humans, Hypoxanthine metabolism, Purines metabolism, RNA, Messenger genetics, Stress, Physiological metabolism, T-Lymphocytes enzymology, 5'-Nucleotidase metabolism, Adenosine metabolism, Adenosine Deaminase metabolism, Adenosine Kinase metabolism, HL-60 Cells metabolism, Tetradecanoylphorbol Acetate pharmacology
- Abstract
Adenosine has potent immunosuppressive activity. Since the source of adenosine and the mechanism of its release in the immune system is largely unknown and may vary according to cell type, we have evaluated the relationship between adenosine metabolism and the enzymatic activities and mRNA levels of adenosine-metabolizing enzymes in myeloid and lymphoid cell lines. Induction of HL-60 cell differentiation along the macrophage lineage by PMA resulted in a reduction in the activities of adenosine deaminase (ADA), adenosine kinase (AK), and inosine monophosphate-specific cytosolic 5'-nucleotidase and an elevation of ecto-5'-nucleotidase (ecto-5'-NT). These changes were accompanied by an elevation of ecto-5'-NT mRNA and a decrease in ADA and AK mRNAs in a time-dependent fashion. Comparison of AK and ADA mRNA levels in several other leukemic cell lines revealed generally similar responses to PMA with much stronger suppression in immature T cells than in B cells. The metabolism of adenosine either through phosphorylation (AK) or deamination (ADA) was reduced in PMA-stimulated cells. Furthermore, the cumulative changes in enzyme expression resulted in a 2.5-fold increase in intracellular adenosine formation in PMA-stimulated cells. The inhibition of AK by 5'-iodotubercidin further increased adenosine formation by 6-fold over that in untreated cells. In accord with the increase in ecto-5'-NT activity, extracellular AMP dephosphorylation increased dramatically, but there was no increase in extracellular ATP degradation. These results indicate that a coordinated shift in adenosine-metabolizing enzyme levels during PMA-induced HL-60 cell differentiation is accompanied by a decrease in adenosine uptake and an increase in adenosine release.
- Published
- 1997