5 results on '"Patrick Bossuyt"'
Search Results
2. Machine learning algorithms identify novel biomarker combinations for NAFLD
- Author
-
Jenny Lee, Max Westphal, Yasaman Vali, Yu Chen, Leigh Alexander, Jerome Boursier, Quentin Anstee, Aeilko Zwinderman, and Patrick Bossuyt
- Subjects
Hepatology - Published
- 2022
3. Accuracy of cytokeratin-18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: a systematic review and meta-analysis
- Author
-
Jenny Lee, Yasaman Vali, Quentin Anstee, Kevin Duffin, Patrick Bossuyt, and Mohammad Hadi Zafarmand
- Subjects
Hepatology - Published
- 2020
4. Diagnostic accuracy of magnetic resonance elastography for the staging of fibrosis and diagnosis of steatohepatitis in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis
- Author
-
Ferenc Mozes, Hadi Zafarmand, Arjun Jayaswal, Emmanuel Selvaraj, Christina Levick, Naaventhan Palaniyappan, Chang-Hai Liu, Stefan Neubauer, Manuel Romero Gomez, Guruprasad Aithal, Quentin Anstee, Stephen Harrison, Patrick Bossuyt, and Michael Pavlides
- Subjects
Hepatology - Published
- 2020
5. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis
- Author
-
Emmanuel Anandraj Selvaraj, Ferenc Emil Mózes, Arjun Narayan Ajmer Jayaswal, Mohammad Hadi Zafarmand, Yasaman Vali, Jenny A. Lee, Christina Kim Levick, Liam Arnold Joseph Young, Naaventhan Palaniyappan, Chang-Hai Liu, Guruprasad Padur Aithal, Manuel Romero-Gómez, M. Julia Brosnan, Theresa A. Tuthill, Quentin M. Anstee, Stefan Neubauer, Stephen A. Harrison, Patrick M. Bossuyt, Michael Pavlides, Quentin Anstee, Ann Daly, Katherine Johnson, Olivier Govaere, Simon Cockell, Dina Tiniakos, Pierre Bedossa, Fiona Oakley, Heather Cordell, Chris Day, Kristy Wonders, Patrick Bossuyt, Hadi Zafarmand, Jenny Lee, Vlad Ratziu, Karine Clement, Raluca Pais, Detlef Schuppan, Jörn Schattenberg, Toni Vidal-Puig, Michele Vacca, Sergio Rodrigues-Cuenca, Mike Allison, Ioannis Kamzolas, Evangelia Petsalaki, Matej Oresic, Tuulia Hyötyläinen, Aiden McGlinchey, Jose M. Mato, Oscar Millet, Jean-François Dufour, Annalisa Berzigotti, Stephen Harrison, Jeremy Cobbold, Ferenc Mozes, Salma Akhtar, Rajarshi Banerjee, Matt Kelly, Elizabeth Shumbayawonda, Andrea Dennis, Charlotte Erpicum, Emilio Gómez-González, Javier Ampuero, Javier Castell, Rocío Gallego-Durán, Isabel Fernández, Rocío Montero-Vallejo, Morten Karsdal, Elisabeth Erhardtsen, Daniel Rasmussen, Diana Julie Leeming, Mette Juul Fisker, Antonia Sinisi, Kishwar Musa, Fay Betsou, Estelle Sandt, Manuela Tonini, Elisabetta Bugianesi, Chiara Rosso, Angelo Armandi, Fabio Marra, Amalia Gastaldelli, Gianluca Svegliati, Jérôme Boursier, Sven Francque, Luisa Vonghia, Mattias Ekstedt, Stergios Kechagias, Hannele Yki-Jarvinen, Panu Luukkonen, Saskia van Mil, George Papatheodoridis, Helena Cortez-Pinto, Luca Valenti, Salvatore Petta, Luca Miele, Andreas Geier, Christian Trautwein, Guru Aithal, Paul Hockings, Philip Newsome, David Wenn, Cecília Maria Pereira Rodrigues, Pierre Chaumat, Rémy Hanf, Aldo Trylesinski, Pablo Ortiz, Kevin Duffin, Julia Brosnan, Theresa Tuthill, Euan McLeod, Judith Ertle, Ramy Younes, Rachel Ostroff, Leigh Alexander, Mette Skalshøi Kjær, Lars Friis Mikkelsen, Maria-Magdalena Balp, Clifford Brass, Lori Jennings, Miljen Martic, Juergen Loeffler, Guido Hanauer, Sudha Shankar, Céline Fournier, Kay Pepin, Richard Ehman, Joel Myers, Gideon Ho, Richard Torstenson, Rob Myers, Lynda Doward, LITMUS Investigators, Innovative Medicines Initiative, European Commission, European Federation of Pharmaceutical Industries and Associations, Epidemiology and Data Science, APH - Aging & Later Life, APH - Methodology, ARD - Amsterdam Reproduction and Development, Graduate School, APH - Personalized Medicine, Selvaraj E.A., Mozes F.E., Jayaswal A.N.A., Zafarmand M.H., Vali Y., Lee J.A., Levick C.K., Young L.A.J., Palaniyappan N., Liu C.-H., Aithal G.P., Romero-Gomez M., Brosnan M.J., Tuthill T.A., Anstee Q.M., Neubauer S., Harrison S.A., Bossuyt P.M., Pavlides M., Daly A., Johnson K., Govaere O., Cockell S., Tiniakos D., Bedossa P., Oakley F., Cordell H., Day C., Wonders K., Bossuyt P., Zafarmand H., Lee J., Ratziu V., Clement K., Pais R., Schuppan D., Schattenberg J., Vidal-Puig T., Vacca M., Rodrigues-Cuenca S., Allison M., Kamzolas I., Petsalaki E., Oresic M., Hyotylainen T., McGlinchey A., Mato J.M., Millet O., Dufour J.-F., Berzigotti A., Harrison S., Cobbold J., Mozes F., Akhtar S., Banerjee R., Kelly M., Shumbayawonda E., Dennis A., Erpicum C., Gomez-Gonzalez E., Ampuero J., Castell J., Gallego-Duran R., Fernandez I., Montero-Vallejo R., Karsdal M., Erhardtsen E., Rasmussen D., Leeming D.J., Fisker M.J., Sinisi A., Musa K., Betsou F., Sandt E., Tonini M., Bugianesi E., Rosso C., Armandi A., Marra F., Gastaldelli A., Svegliati G., Boursier J., Francque S., Vonghia L., Ekstedt M., Kechagias S., Yki-Jarvinen H., Luukkonen P., van Mil S., Papatheodoridis G., Cortez-Pinto H., Valenti L., Petta S., Miele L., Geier A., Trautwein C., Aithal G., Hockings P., Newsome P., Wenn D., Pereira Rodrigues C.M., Chaumat P., Hanf R., Trylesinski A., Ortiz P., Duffin K., Brosnan J., Tuthill T., McLeod E., Ertle J., Younes R., Ostroff R., Alexander L., Kjaer M.S., Mikkelsen L.F., Balp M.-M., Brass C., Jennings L., Martic M., Loeffler J., Hanauer G., Shankar S., Fournier C., Pepin K., Ehman R., Myers J., Ho G., Torstenson R., Myers R., and Doward L.
- Subjects
0301 basic medicine ,FIBROSIS NONINVASIVE ASSESSMENT ,Cirrhosis ,Transient elastography ,deMILI ,0302 clinical medicine ,Medicine ,BARIATRIC SURGERY CANDIDATES ,Non-alcoholic steatohepatitis ,medicine.diagnostic_test ,NONALCOHOLIC STEATOHEPATITIS ,Fatty liver ,Magnetic Resonance Imaging ,3. Good health ,Area Under Curve ,Liver biopsy ,Elasticity Imaging Techniques ,NASH-MRI ,030211 gastroenterology & hepatology ,Bio-markers ,Radiology ,Elastography ,Diffusion-weighted imaging ,Life Sciences & Biomedicine ,Adult ,PREDICTS ADVANCED FIBROSIS ,medicine.medical_specialty ,Biomarkers, deMILI, Diffusion-weighted imaging, Magnetic resonance elastography, NASH-MRI, Non-alcoholic fatty liver disease, Non-alcoholic steatohepatitis, Shear wave elastography, Transient elastography, Adult,Area Under Curve, Elasticity Imaging Techniques, Humans, Magnetic Resonance Imaging, Non-alcoholic Fatty Liver Disease, ROC Curve, fibro-MRI, Iron-corrected T1, Liver fibrosis ,Liver fibrosis ,CONTROLLED ATTENUATION PARAMETER ,STIFFNESS MEASUREMENT ,03 medical and health sciences ,Iron-corrected T1 ,Humans ,FATTY LIVER-DISEASE ,Science & Technology ,Hepatology ,Gastroenterology & Hepatology ,business.industry ,RADIATION FORCE IMPULSE ,Magnetic resonance imaging ,medicine.disease ,CONTROLLED TRANSIENT ELASTOGRAPHY ,Magnetic resonance elastography ,030104 developmental biology ,ROC Curve ,Shear wave elastography ,XL PROBE ,Human medicine ,fibro-MRI ,Steatohepatitis ,business ,Biomarkers ,Non-alcoholic fatty liver disease - Abstract
[Background and Aims] Vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), 2-dimensional shear wave elastography (2DSWE), magnetic resonance elastography (MRE), and magnetic resonance imaging (MRI) have been proposed as non-invasive tests for patients with non-alcoholic fatty liver disease (NAFLD). This study evaluated their diagnostic accuracy for liver fibrosis and non-alcoholic steatohepatitis (NASH)., [Methods] PubMED/MEDLINE, EMBASE and the Cochrane Library were searched for studies examining the diagnostic accuracy of these index tests, against histology as the reference standard, in adult patients with NAFLD. Two authors independently screened and assessed methodological quality of studies and extracted data. Summary estimates of sensitivity, specificity and area under the curve (sAUC) were calculated for fibrosis stages and NASH, using a random effects bivariate logit-normal model., [Results] We included 82 studies (14,609 patients). Meta-analysis for diagnosing fibrosis stages was possible in 53 VCTE, 11 MRE, 12 pSWE and 4 2DSWE studies, and for diagnosing NASH in 4 MRE studies. sAUC for diagnosis of significant fibrosis were: 0.83 for VCTE, 0.91 for MRE, 0.86 for pSWE and 0.75 for 2DSWE. sAUC for diagnosis of advanced fibrosis were: 0.85 for VCTE, 0.92 for MRE, 0.89 for pSWE and 0.72 for 2DSWE. sAUC for diagnosis of cirrhosis were: 0.89 for VCTE, 0.90 for MRE, 0.90 for pSWE and 0.88 for 2DSWE. MRE had sAUC of 0.83 for diagnosis of NASH. Three (4%) studies reported intention-to-diagnose analyses and 15 (18%) studies reported diagnostic accuracy against pre-specified cut-offs., [Conclusions] When elastography index tests are acquired successfully, they have acceptable diagnostic accuracy for advanced fibrosis and cirrhosis. The potential clinical impact of these index tests cannot be assessed fully as intention-to-diagnose analyses and validation of pre-specified thresholds are lacking., [Lay summary] Non-invasive tests that measure liver stiffness or use magnetic resonance imaging (MRI) have been suggested as alternatives to liver biopsy for assessing the severity of liver scarring (fibrosis) and fatty inflammation (steatohepatitis) in patients with non-alcoholic fatty liver disease (NAFLD). In this study, we summarise the results of previously published studies on how accurately these non-invasive tests can diagnose liver fibrosis and inflammation, using liver biopsy as the reference. We found that some techniques that measure liver stiffness had a good performance for the diagnosis of severe liver scarring., This work has been undertaken as part of the LITMUS (Liver Investigation: Testing Marker Utility in Steatohepatitis) project. The LITMUS project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No. 777377. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Europen Federation of Pharmaceutical Industries and Associations (efpia.eu).
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.