1. Proper edge colorings of planar graphs with rainbow C4 ${C}_{4}$‐s.
- Author
-
Gyárfás, András, Martin, Ryan R., Ruszinkó, Miklós, and Sárközy, Gábor N.
- Subjects
- *
GRAPH coloring , *BIPARTITE graphs , *RAINBOWS , *LOGICAL prediction , *MOTIVATION (Psychology) - Abstract
We call a proper edge coloring of a graph G $G$ a B‐coloring if every 4‐cycle of G $G$ is colored with four different colors. Let qB(G) ${q}_{B}(G)$ denote the smallest number of colors needed for a B‐coloring of G $G$. Motivated by earlier papers on B‐colorings, here we consider qB(G) ${q}_{B}(G)$ for planar and outerplanar graphs in terms of the maximum degree Δ=Δ(G) ${\rm{\Delta }}={\rm{\Delta }}(G)$. We prove that qB(G)≤2Δ+8 ${q}_{B}(G)\le 2{\rm{\Delta }}+8$ for planar graphs, qB(G)≤2Δ ${q}_{B}(G)\le 2{\rm{\Delta }}$ for bipartite planar graphs, and qB(G)≤Δ+1 ${q}_{B}(G)\le {\rm{\Delta }}+1$ for outerplanar graphs with Δ≥4 ${\rm{\Delta }}\ge 4$. We conjecture that, for Δ ${\rm{\Delta }}$ sufficiently large, qB(G)≤2Δ(G) ${q}_{B}(G)\le 2{\rm{\Delta }}(G)$ for planar G $G$, and qB(G)≤Δ(G) ${q}_{B}(G)\le {\rm{\Delta }}(G)$ for outerplanar G $G$. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF