13 results on '"D. Chabot"'
Search Results
2. Modelling gastric evacuation in gadoids feeding on crustaceans
- Author
-
N G, Andersen, D, Chabot, and C S, Couturier
- Subjects
Gadiformes ,Gadus morhua ,Gastric Emptying ,Animal Shells ,Brachyura ,Predatory Behavior ,Stomach ,Fishes ,Animals ,Digestion ,Pandalidae ,Models, Biological ,Gastrointestinal Contents - Abstract
A mechanistic, prey surface-dependent model was expanded to describe the course and rate of gastric evacuation in predatory fishes feeding on crustacean prey with robust exoskeletons. This was accomplished by adding a layer of higher resistance to the digestive processes outside the inner softer parts of a prey cylinder abstraction and splitting up the prey evacuation into two stages: an initial stage where the exoskeleton is cracked and a second where the prey remains are digested and evacuated. The model was parameterized for crustaceans with different levels of armour fed to Atlantic cod Gadus morhua or whiting Merlangius merlangus and recovered from the stomachs at different post-prandial times. The prey species were krill Meganyctiphanes norvegica; shrimps and prawns Crangon crangon, Pandalus borealis, Pandalus montagui and Eualus macilentus; crabs Liocarcinus depurator and Chionoecetes opilio. In accordance with the apparent intraspecific isometric relationship between exoskeleton mass and total body mass, the model described stage duration and rate of evacuation of the crustacean prey independently of meal and prey sizes. The duration of the first stage increased (0-33 h) and the evacuation rate of both stages decreased (by a half) with increasing level of the crustacean armament in terms of chitin and ash. A common, interspecific parameterization of the model within each of the categories krill, shrimp and crab can probably be used if the contents of chitin and ash are similar among prey species per prey category. The model offers a simple way for estimating evacuation rates from stomach content data in order to obtain food consumption rates of wild fishes, provided that information about digestion stage of crustacean prey is available.
- Published
- 2015
3. The measurement of specific dynamic action in fishes
- Author
-
D, Chabot, R, Koenker, and A P, Farrell
- Subjects
Oxygen Consumption ,Gadus morhua ,Animals ,Digestion ,Basal Metabolism ,Motor Activity ,Energy Metabolism ,Postprandial Period ,Diet - Abstract
Specific dynamic action (SDA) is the postprandial increase in oxygen uptake. Whereas it is easy to measure in fishes that remain calm and motionless during the entire digestion period, spontaneous locomotor activity is a frequent problem that leads to overestimation of SDA amplitude and magnitude (area under the curve, bound by the standard metabolic rate, SMR). Few studies have attempted to remove the effect of fish activity on SDA. A new method, non-parametric quantile regression, is described to estimate SDA even when pronounced circadian activity cycles are present. Data from juvenile Atlantic cod Gadus morhua are used to demonstrate its use and advantages compared with traditional techniques. Software (scripts in the R language) is provided to facilitate its use.
- Published
- 2015
4. Responses by fishes to environmental hypoxia: integration through Fry's concept of aerobic metabolic scope
- Author
-
G, Claireaux and D, Chabot
- Subjects
Oxygen ,Oxygen Consumption ,Fishes ,Animals ,Environment ,Hypoxia - Abstract
The problem of understanding the effect of the environment on fish activities and performance, in any generalized way, remains intractable. Solving this issue is, however, a key to addressing contemporary environmental concerns. As suggested 20 years ago by W. H. Neill, the authors returned to the drawing board, using as a background the conceptual scheme initially proposed by F. E. J. Fry. They revisited the effect of ambient oxygen availability upon fish metabolism and clarified the definitions of limiting, critical and incipient lethal oxygen (ILO) levels. The concepts of oxy-conformer and oxy-regulator are revisited, and P. W. Hochachka's idea of scope for survival is explored. Finally, how the cardiovascular system contributes to the capacity of fishes to respond to the reduced oxygen availability is considered. Various hands-on recommendations and software (R scripts) are provided for researchers interested in investigating these concepts.
- Published
- 2015
5. The determination of standard metabolic rate in fishes
- Author
-
D, Chabot, J F, Steffensen, and A P, Farrell
- Subjects
Oxygen ,Oxygen Consumption ,Fishes ,Animals ,Basal Metabolism ,Energy Metabolism - Abstract
This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, ṀO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of ṀO2 data from different fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest ṀO2 values, after removing the five lowest ones as outliers (low10%), mean of the lowest normal distribution (MLND) and quantiles that assign from 10 to 30% of the data below SMR (q0·1 , q0·15 , q0·2 , q0·25 and q0·3 ). The eight methods yielded significantly different SMR estimates, as expected. While the differences were small when the variability was low amongst the ṀO2 values, they were important (20%) for several cases. The degree of agreement between the methods was related to the c.v. of the observations that were classified into the lowest normal distribution, the c.v. MLND (C.V.MLND ). When this indicator was low (≤5·4), it was advantageous to use the MLND, otherwise, one of the q0·2 or q0·25 should be used. The second objective was to assess if the data recorded during the initial recovery period in the respirometer should be included or excluded, and the recommendation is to exclude them. The final objective was to determine the minimal duration of experiments aiming to estimate SMR. The results show that 12 h is insufficient but 24 h is adequate. A list of basic recommendations for practitioners who use respirometry to measure SMR in fishes is provided.
- Published
- 2014
6. Feeding ecology of redfish (Sebastes sp.) inferred from the integrated use of fatty acid profiles as complementary dietary tracers to stomach content analysis.
- Author
-
Brown-Vuillemin S, Tremblay R, Chabot D, Sirois P, and Robert D
- Subjects
- Animals, Ecosystem, Fatty Acids analysis, Fishes, Diet veterinary, Gastrointestinal Contents chemistry, Perciformes
- Abstract
In the northern Gulf of St. Lawrence (nGSL), redfish (Sebastes mentella and Sebastes fasciatus combined) are at record levels of abundance following the strong recruitment of three consecutive cohorts in 2011-2013 and have become by far the most abundant demersal fish in the region. Understanding redfish trophic relationships is essential for the effective management and conservation of species in the nGSL ecosystem. To date, description and quantification of redfish diet in the region have been restricted to conventional stomach content analysis (SCA). Using analysis of fatty acid (FA) profiles as complementary dietary tracers, the authors conducted multivariate analyses on 350 livers of redfish which were collected in combination with stomach contents during a bottom-trawl scientific survey in August 2017. The predator FA profiles were compared to those of eight different redfish prey types identified as dietary important with SCA. Results suggested similitude between SCA and FA results, with zooplankton prey being more related to small (<20 cm) and medium (20-30 cm) redfish (16:1n7, 20:1n?, 22:1n9 and 20:5n3) than large (≥30 cm) ones, whereas shrimp prey seemed more related to large redfish size classes (18:2n6 and 22:6n3) relative to the small and medium ones. Although the SCA offers a glimpse in the diet only based on the most recently consumed prey, analysis of FA profiles provides a mid-term view indicating pelagic zooplankton consumption on calanoid copepod and confirming high predation pressure on shrimp. This study constitutes the first attempt of combining FA with SCA to assess the diet of redfish, highlights the benefits of FA as a qualitative tool and suggests improvements for future studies., (© 2023 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.)
- Published
- 2023
- Full Text
- View/download PDF
7. Valid oxygen uptake measurements: using high r 2 values with good intentions can bias upward the determination of standard metabolic rate.
- Author
-
Chabot D, Zhang Y, and Farrell AP
- Subjects
- Animals, Oxygen metabolism, Basal Metabolism physiology, Fishes metabolism, Monitoring, Physiologic methods, Monitoring, Physiologic standards, Oxygen analysis, Oxygen Consumption physiology
- Abstract
This analysis shows good intentions in the selection of valid and precise oxygen uptake ( M ˙ O
2 ) measurements by retaining only slopes of declining dissolved oxygen level in a respirometer that have very high values of the coefficient of determination, r2 , are not always successful at excluding nonlinear slopes. Much worse, by potentially removing linear slopes that have low r2 only because of a low signal-to-noise ratio, this procedure can overestimate the calculation of standard metabolic rate (SMR) of the fish. To remedy this possibility, a few simple diagnostic tools are demonstrated to assess the appropriateness of a given minimum acceptable r2 , such as calculating the proportion of rejected M ˙ O2 determinations, producing a histogram of the r2 values and a plot of r2 as a function of M ˙ O2 . The authors offer solutions for cases when many linear slopes have low r2 . The least satisfactory but easiest to implement is lowering the minimum acceptable r2 . More satisfactory solutions involve processing (smoothing) the raw signal of dissolved oxygen as a function of time to improve the signal-to-noise ratio and the r2 s., (© 2020 Her Majesty the Queen in Right of Canada. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.)- Published
- 2021
- Full Text
- View/download PDF
8. Modelling gastric evacuation in gadoids feeding on crustaceans.
- Author
-
Andersen NG, Chabot D, and Couturier CS
- Subjects
- Animal Shells, Animals, Brachyura chemistry, Digestion, Fishes, Gadiformes, Gastrointestinal Contents, Pandalidae, Predatory Behavior, Stomach, Gadus morhua physiology, Gastric Emptying, Models, Biological
- Abstract
A mechanistic, prey surface-dependent model was expanded to describe the course and rate of gastric evacuation in predatory fishes feeding on crustacean prey with robust exoskeletons. This was accomplished by adding a layer of higher resistance to the digestive processes outside the inner softer parts of a prey cylinder abstraction and splitting up the prey evacuation into two stages: an initial stage where the exoskeleton is cracked and a second where the prey remains are digested and evacuated. The model was parameterized for crustaceans with different levels of armour fed to Atlantic cod Gadus morhua or whiting Merlangius merlangus and recovered from the stomachs at different post-prandial times. The prey species were krill Meganyctiphanes norvegica; shrimps and prawns Crangon crangon, Pandalus borealis, Pandalus montagui and Eualus macilentus; crabs Liocarcinus depurator and Chionoecetes opilio. In accordance with the apparent intraspecific isometric relationship between exoskeleton mass and total body mass, the model described stage duration and rate of evacuation of the crustacean prey independently of meal and prey sizes. The duration of the first stage increased (0-33 h) and the evacuation rate of both stages decreased (by a half) with increasing level of the crustacean armament in terms of chitin and ash. A common, interspecific parameterization of the model within each of the categories krill, shrimp and crab can probably be used if the contents of chitin and ash are similar among prey species per prey category. The model offers a simple way for estimating evacuation rates from stomach content data in order to obtain food consumption rates of wild fishes, provided that information about digestion stage of crustacean prey is available., (© 2016 The Fisheries Society of the British Isles.)
- Published
- 2016
- Full Text
- View/download PDF
9. Metabolic rate in fishes: definitions, methods and significance for conservation physiology.
- Author
-
Chabot D, McKenzie DJ, and Craig JF
- Published
- 2016
- Full Text
- View/download PDF
10. The measurement of specific dynamic action in fishes.
- Author
-
Chabot D, Koenker R, and Farrell AP
- Subjects
- Animals, Basal Metabolism, Diet veterinary, Digestion, Motor Activity, Postprandial Period, Energy Metabolism, Gadus morhua metabolism, Oxygen Consumption
- Abstract
Specific dynamic action (SDA) is the postprandial increase in oxygen uptake. Whereas it is easy to measure in fishes that remain calm and motionless during the entire digestion period, spontaneous locomotor activity is a frequent problem that leads to overestimation of SDA amplitude and magnitude (area under the curve, bound by the standard metabolic rate, SMR). Few studies have attempted to remove the effect of fish activity on SDA. A new method, non-parametric quantile regression, is described to estimate SDA even when pronounced circadian activity cycles are present. Data from juvenile Atlantic cod Gadus morhua are used to demonstrate its use and advantages compared with traditional techniques. Software (scripts in the R language) is provided to facilitate its use., (© 2016 Her Majesty the Queen in Right of Canada. Journal of Fish Biology © 2016 The Fisheries Society of the British Isles.)
- Published
- 2016
- Full Text
- View/download PDF
11. Responses by fishes to environmental hypoxia: integration through Fry's concept of aerobic metabolic scope.
- Author
-
Claireaux G and Chabot D
- Subjects
- Animals, Environment, Fishes physiology, Hypoxia, Oxygen metabolism, Oxygen Consumption
- Abstract
The problem of understanding the effect of the environment on fish activities and performance, in any generalized way, remains intractable. Solving this issue is, however, a key to addressing contemporary environmental concerns. As suggested 20 years ago by W. H. Neill, the authors returned to the drawing board, using as a background the conceptual scheme initially proposed by F. E. J. Fry. They revisited the effect of ambient oxygen availability upon fish metabolism and clarified the definitions of limiting, critical and incipient lethal oxygen (ILO) levels. The concepts of oxy-conformer and oxy-regulator are revisited, and P. W. Hochachka's idea of scope for survival is explored. Finally, how the cardiovascular system contributes to the capacity of fishes to respond to the reduced oxygen availability is considered. Various hands-on recommendations and software (R scripts) are provided for researchers interested in investigating these concepts., (© 2016 The Fisheries Society of the British Isles.)
- Published
- 2016
- Full Text
- View/download PDF
12. The determination of standard metabolic rate in fishes.
- Author
-
Chabot D, Steffensen JF, and Farrell AP
- Subjects
- Animals, Basal Metabolism, Oxygen metabolism, Energy Metabolism, Fishes metabolism, Oxygen Consumption
- Abstract
This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, ṀO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of ṀO2 data from different fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest ṀO2 values, after removing the five lowest ones as outliers (low10%), mean of the lowest normal distribution (MLND) and quantiles that assign from 10 to 30% of the data below SMR (q0·1 , q0·15 , q0·2 , q0·25 and q0·3 ). The eight methods yielded significantly different SMR estimates, as expected. While the differences were small when the variability was low amongst the ṀO2 values, they were important (>20%) for several cases. The degree of agreement between the methods was related to the c.v. of the observations that were classified into the lowest normal distribution, the c.v. MLND (C.V.MLND ). When this indicator was low (≤5·4), it was advantageous to use the MLND, otherwise, one of the q0·2 or q0·25 should be used. The second objective was to assess if the data recorded during the initial recovery period in the respirometer should be included or excluded, and the recommendation is to exclude them. The final objective was to determine the minimal duration of experiments aiming to estimate SMR. The results show that 12 h is insufficient but 24 h is adequate. A list of basic recommendations for practitioners who use respirometry to measure SMR in fishes is provided., (© 2016 The Fisheries Society of the British Isles.)
- Published
- 2016
- Full Text
- View/download PDF
13. Prey exoskeletons influence the course of gastric evacuation in Atlantic cod Gadus morhua.
- Author
-
Couturier CS, Andersen NG, Audet C, and Chabot D
- Subjects
- Animals, Gastrointestinal Contents, Predatory Behavior, Gadus morhua physiology, Gastric Emptying physiology
- Abstract
This study examined the effects of prey exoskeleton characteristics on gastric evacuation patterns in Atlantic cod Gadus morhua. Three distinct stages were highlighted in the gastric evacuation of crustacean prey characterized by a robust exoskeleton. The experiments confirmed that the three shrimp species, Pandalus borealis, Pandalus montagui and Eualus macilentus, and the crab Chionoecetes opilio, were evacuated from the stomach at different rates. The duration of all stages increased with increasing ash (and carbonate) content of the fresh prey. Thickness, chemical composition and morphology of the prey exoskeleton all affected gastric evacuation: duration of initial delay, overall evacuation rate and a decreased evacuation rate at the end of the process. The power exponential function (PEF), with its shape parameter, described the course of evacuation for these prey types well, especially the initial delay. The PEF does not, however, allow describing evacuation by the current stomach content mass independent of meal size, which limits its usefulness in estimating consumption rates of wild G. morhua. To predict and describe gastric evacuation of prey with a robust exoskeleton, it is therefore suggested that the square-root function be expanded with an initial lag phase, coupled to the mechanistically based cylinder model of gastric evacuation., (© 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.