1. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants.
- Author
-
Auverlot, Juline, Dard, Avilien, Sáez-Vásquez, Julio, and Reichheld, Jean-Philippe
- Subjects
- *
GENETIC regulation , *POST-translational modification , *GENE expression , *REGULATOR genes , *REACTIVE nitrogen species , *EPIGENOMICS - Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF