1. Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom.
- Author
-
Peng L, Lang S, Wang Y, Pritchard HW, and Wang X
- Subjects
- Abscisic Acid metabolism, Alternative Splicing, Caragana metabolism, Hydrogen Peroxide, Polyethylene Glycols pharmacology, Caragana growth & development, Desiccation, Germination, Reactive Oxygen Species metabolism, Seeds growth & development
- Abstract
In close agreement with visible germination, orthodox seeds lose desiccation tolerance (DT). This trait can be regained under osmotic stress, but the mechanisms are poorly understood. In this study, germinating seeds of Caragana korshinskii Kom. were investigated, focusing on the potential modulating roles of reactive oxygen species (ROS) in the re-establishment of DT. Germinating seeds with 2 mm long radicles can be rendered tolerant to desiccation by incubation in a polyethylene glycol (PEG) solution (-1.7 MPa). Upon PEG incubation, ROS accumulation was detected in the radicles tip by nitroblue tetrazolium chloride staining and further confirmed by confocal microscopy. The PEG-induced re-establishment of DT was repressed when ROS scavengers were added to the PEG solution. Moreover, ROS act downstream of abscisic acid (ABA) to modulate PEG-mediated re-establishment of DT and serve as a new inducer to re-establish DT. Transcriptomic analysis revealed that re-establishment of DT by ROS involves the up-regulation of key genes in the phenylpropanoid-flavonoid pathway, and total flavonoid content and key enzyme activity increased after ROS treatment. Furthermore, DT was repressed by an inhibitor of phenylalanine ammonia lyase. Our data suggest that ROS play a key role in the re-establishment of DT by regulating stress-related genes and the phenylpropanoid-flavonoid pathway., (© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF