1. Altered VEGF-stimulated Ca2+ signaling in part underlies pregnancy-adapted eNOS activity in UAEC
- Author
-
Mary A. Grummer, Ronald R. Magness, Derek S. Boeldt, and Ian M. Bird
- Subjects
Boron Compounds ,Vascular Endothelial Growth Factor A ,medicine.medical_specialty ,Nitric Oxide Synthase Type III ,Endothelium ,Phosphodiesterase Inhibitors ,Endocrinology, Diabetes and Metabolism ,Blotting, Western ,Vasodilation ,Inositol 1,4,5-Trisphosphate ,Article ,chemistry.chemical_compound ,Endocrinology ,Pregnancy ,Enos ,Internal medicine ,medicine ,Animals ,Inositol ,Calcium Signaling ,Estrenes ,Cells, Cultured ,Sheep ,Dose-Response Relationship, Drug ,biology ,Phospholipase C ,Endothelial Cells ,Kinase insert domain receptor ,biology.organism_classification ,Vascular Endothelial Growth Factor Receptor-2 ,Pyrrolidinones ,Vascular endothelial growth factor ,Uterine Artery ,Vascular endothelial growth factor A ,medicine.anatomical_structure ,chemistry ,Type C Phospholipases ,Calcium ,Female ,Signal Transduction - Abstract
In pregnancy, the uterine vasculature undergoes dramatic vasodilatory adaptations. Previously, vascular endothelial growth factor (VEGF) has been shown to stimulate endothelial nitric oxide synthase (eNOS) in uterine artery endothelial cells (UAECs) derived from pregnant ewes to a greater extent than those from non-pregnant ewes in a manner not fully explained by changes in the phosphorylation of eNOS. In this study, we used Fura-2 Ca2+imaging and arginine-to-citrulline conversion eNOS activity assays to assess the importance of VEGF-stimulated Ca2+responses in pregnancy-related changes in NO production in UAEC. In this study, we show that pregnancy-induced changes in VEGF-stimulated Ca2+responses could account in part for the greater capacity of VEGF to stimulate eNOS in UAECs from pregnant versus non-pregnant animals. VEGF-stimulated Ca2+responses in UAECs from pregnant and non-pregnant animals were mediated through VEGF receptor 2 and were detected in roughly 15% of all cells. There were no pregnancy-specific differences in area under the curve or peak height. UAECs from pregnant animals were more consistent in the time to response initiation, had a larger component of extracellular Ca2+entry, and were more sensitive to a submaximal dose of VEGF. In UAECs from pregnant and non-pregnant animals Ca2+responses and eNOS activation were sensitive to the phospholipase C/inositol 1,4,5-trisphosphate pathway inhibitors 2-aminoethoxydiphenylborane and U73122. Thus, changes in VEGF-stimulated [Ca2+]iare necessary for eNOS activation in UAECs, and pregnancy-induced changes in Ca2+responses could also in part explain the pregnancy-specific adaptive increase in eNOS activity in UAECs.
- Published
- 2014